
Alexey Slovesnov

email slovesnov@yandex.ru

site http://slovesnov.users.sourceforge.net/?bullscows,english

Search of optimal algorithms for bulls and cows game.

Abstract.

The article concerns two optimization ways of bulls and cows game. The
first one is minimizing amount of numbers which computer can guess for exactly
seven turns, all others should be guessed for up to six turns. The second way
is minimizing average amount of turns for guess arbitrary secret number (mini-
mizing average game length). During of search several intermediate algorithms
were created. For some of them trees are built and created web application for
online playing between computer and man.

At the moment author searches for servers to finish calculations and finding
the exact estimation. If you want to help the project please write to the author.

5 November 2013

Edition 2.1

address of last edition of article
http://slovesnov.users.sourceforge.net/bullscows/bullscows.pdf

mailto:slovesnov@yandex.ru
http://slovesnov.users.sourceforge.net/?bullscows,english
http://slovesnov.users.sourceforge.net/bullscows/bullscows.pdf

Contents

Introduction. 3

1 Theory. 3
1.1 Notation. 3
1.2 Transformations. 4
1.3 The equivalence classes. 6
1.4 Set of first moves. 7
1.5 Set of second moves. 7
1.6 Set of third moves. 8
1.7 Subsets estimation. 8
1.8 Minimal estimation. 9
1.9 Fast estimation. 9
1.10 Cutoffs for turns 4-6. 10

1.10.1 Absent digits. 10
1.10.2 Uncalled digits. 10
1.10.3 Numbers which split set of recent numbers into one group. 11

1.11 For several turns we got the same response. 11

2 Algorithms. 12
2.1 The exact algorithm. 12

2.1.1 Last layer algorithm. 12
2.2 Heuristic algorithms. 12

2.2.1 Crush algorithm. 13
2.2.2 Larmouth’s algorithm. 13

2.3 Accelerations of algorithm. 14
2.4 Notation of algorithms. 14
2.5 Algorithm extension for counting 6th, 5th etc. 14

3 Algorithm components. 15
3.1 Alpha-beta pruning. 15
3.2 Sets of the second, third turns and fixed the first one. 15
3.3 Sorting of second and third turns. 15
3.4 Sorting of other turns. 15
3.5 The response table. 15
3.6 The mechanism of the tasks. 15

4 Projects description. 16
4.1 Console application ”executor”. 16
4.2 Windows service. 16
4.3 Windows application - bcw. 16
4.4 Console application ”shutdown”. 17
4.5 Tree application (written on JavaScript). 17

1

5 Minimizing 7th results. 17
5.1 Crush35 and crush45 algorithms. 17
5.2 Transition from one algorithm to another. 18
5.3 Crush5 algorithm. 20

5.3.1 Estimations for the best turns (steps 1-5). 20
5.3.2 Building of the table (step 6). 20
5.3.3 The best turn after the first turn (0123,0.2) (steps 7-8). . 21
5.3.4 The best turn after (0123,0.1) (step 9). 22
5.3.5 Checking numbers with digits 0-3 (step 10). 22
5.3.6 The results of crush5 algorithm. 22

5.4 The exact algorithm. 22
5.5 Comparison table of different algorithms. 23

6 Minimizing amount of 6th, 5th etc. 23

7 Minimizing average game length results. 23

8 Tree building. 24
8.1 Tree checking. 25
8.2 Realizing of algorithm on JavaScript. 25

9 Calculation times. 26
9.1 Crush35 and crush45 algorithms. 26
9.2 Crush5 algorithm. 27
9.3 Avg35 and avg45 algorithms. 27
9.4 Avg5 algorithm. 28

10 Edition history. 28

References. 28

2

Introduction.

Optimizing of bulls-cows game traditionally has two directions.

• First direction. Minimizing of average amount of turns to guess arbitrary
secret number. Since this problem is solved (see [1] and [2]), average game
length is 26274/5040=5.2131, then it’s sufficient to find algorithm with
such average game length.

• Second direction. It’s known that there is no algorithm which can guess
each secret number using six or less turns. At the same time there are
algorithms which can guess each number using up to seven moves. So the
second directions is to minimize amount of numbers which algorithm can
guess using exactly seven turns.

Searching of minimal average game length or minimal amount of numbers
which computer can guess using exactly seven moves are very difficult problems.
Let’s try roughly estimate number of operations for exhaustive search. It’s
obviously that we can use number 0123 as first turn without loss of generality.
Moves from second to sixth can be on of 5039 possibilities each (number 0123
not used). After every move we can get up to 14 responses, for one of them (four
bulls and zero cows) we don’t need further computation. Let suppose that we
can reduce average number of turns in four times, and we can reduce average
number of responses in four times as well. So we have estimation for amount of
nodes for exhaustive search 50395 × (13

16)6 ≈ 9.3 × 1017. This estimation looks
like huge even for modern computers.

The article consists of several parts. In first part we introduce some terms
and give mathematical theory. The second part describes the algorithms. The
third one describes base nodes of search algorithms. The fourth one describes
components of project. In fifth part results of algorithms for minimizing amount
of numbers, which can be guessed for seven turns, are showed. In sixth part
algorithm will be extended for minimizing not only amount of numbers which
computer can guess for exactly seven turns, but for minimizing amount of num-
bers which computer can guess using exactly six or fewer turns. Seventh part
has results of minimizing average game length. Eighth part describes of trees
building. They will be use for web application where computer can guess num-
bers. Ninth part concerns of calculations times.

1 Theory.

1.1 Notation.

Response on some number denote as
”

amount of bulls.amount of cows“. For
example, 2.1 means that we got answer two bulls and one cow.

Secret number t with response r name as turn or move and note as (t, r).
Sometimes turn will be written without brackets and comma - 5678 0.1.

3

Set of all secret numbers note as Ω = (0123, 0124 . . . 9876).
Set of all possible answers note as R = (0.0, 0.1 . . . 4.0).
Sequence of turns note as (t1, r1) . . . (tn, rn).
Numbers which can be guessed for exactly k attempts are called as

”
k− th“.

Minimal amount of turns for all algorithms, which can be guessed using ex-
actly k attempts after sequence (t1, r1) . . . (tn, rn) note as Φk[(t1, r1) . . . (tn, rn)].

Minimal average game length for all algorithms, after sequence of turns
(t1, r1) . . . (tn, rn) note as ∆[(t1, r1) . . . (tn, rn)]. Suppose that after sequence of
turns (t1, r1) . . . (tn, rn) left m secret numbers. To work with integer values we’ll
use analogous function, which equals sum of number of turns to guess recent
secret numbers Λ[(t1, r1) . . . (tn, rn)] = m×∆[(t1, r1) . . . (tn, rn)].

Consider sequence of turns (t1, r1) . . . (tn, rn) and number p. Sum of
amount of turns which can be guessed using exactly k tries, after turns
(t1, r1) . . . (tn, rn) and (n + 1)-th turn p with all possible responses note as
Φk[(t1, r1) . . . (tn, rn)(p, ∗)].

Φk[(t1, r1) . . . (tn, rn)(p, ∗)] =
∑
r∈R

Φk[(t1, r1) . . . (tn, rn)(p, r)] (1)

Analogously,

Λ[(t1, r1) . . . (tn, rn)(p, ∗)] =
∑
r∈R

Λ[(t1, r1) . . . (tn, rn)(p, r)] (2)

Numbers consist of four digits. Every digit has its own place from 1 to 4.
First digit has place 1, second one 2, etc. Every digit can be from 0 to 9. Denote
set of all transformations of digits from 0 to 9 and places from 1 to 4 as Ψ. Items
of set Ψ denote as ψ ∈ Ψ.

The result of transformation ψ on number t denote as ψ(t).
The result of transformation ψ on set of numbers T = {t1 . . . tn} denote as

set of numbers {ψ(t1) . . . ψ(tn)}. ψ(T) = {ψ(t1) . . . ψ(tn)}.
Denote cardinality of set S as |S|. For example, |Ψ| = 10!× 4! = 87 091 200.
Empty set - ∅.
The goal of article is to find Φ7[∅] and Λ[∅].

1.2 Transformations.

It’s possible to do any redesignation of digits and positions, which in fact does
not change anything, so the following is true:

Lemma 1 Let we have sequence of turns (t1, r1) . . . (tn, rn), and some trans-
formation ψ, then

Φk[(t1, r1) . . . (tn, rn)] = Φk[(ψ(t1), r1) . . . (ψ(tn), rn)]

Λ[(t1, r1) . . . (tn, rn)] = Λ(ψ(t1), r1) . . . (ψ(tn), rn)]

Lemma 2 For every two numbers p1 and p2 there is exists transformation ψ
such as ψ(p1) = p2 and ψ(p2) = p1.

4

Proof. By writing computer program which looks over all possible numbers
p1 ∈ Ω and p2 ∈ Ω and all transformations ψ ∈ Ψ, we can make sure that it’s
true.

Example. Consider two numbers 0123 and 4051. Find transformation ψ,
such that ψ(0123) = 4051, ψ(4051) = 0123.

Solution. Consider transformation ψ1, which swaps the digits 0 ↔ 1,
2 ↔ 5, 3 ↔ 4. Number 0123 goes to number ψ1(0123) = 1054, and num-
ber 4051 goes to ψ1(4051) = 3120. Now consider place transformation ψ2

1 ↔ 4, digit from first place goes to fourth place and vice versa. By ap-
plying transformation ψ2 we got ψ2(ψ1(0123)) = ψ2(1054) = 4051. Similar
ψ2(ψ1(4051)) = ψ2(3120) = 0123. Thus the composition ψ = ψ2 ◦ ψ1 yields the
desired result.

Lemma 3 For every two numbers p1 and p2 and every two responses r1 and r2

Φk[(p1, r1)(p2, r2)] = Φk[(p1, r2)(p2, r1)]

Φk[(p1, r1)(p2, ∗)] = Φk[(p2, r1)(p1, ∗)]

Proof. From lemma 2 we know that, exists transformation ψ, such that
ψ(p1) = p2, ψ(p2) = p1. Thus, using lemma 1, we have:

Φk[(p1, r1)(p2, r2)] = Φk[(ψ(p1), r1)(ψ(p2), r2)] = Φk[(p2, r1)(p1, r2)]

Since the order of moves is not important, it’s possible to interchange moves
1 and 2, so

Φk[(p2, r1)(p1, r2)] = Φk[(p1, r2)(p2, r1)]

So first was proved. Similarly,

Φk[(p1, r1)(p2, ∗)] =
∑
r

Φk[(p1, r1)(p2, r)] =
∑
r

Φk[(p2, r1)(p1, r)] = Φk[(p2, r1)(p1, ∗)]

Assertion was proved.
Note. The same is true for Λ function.

Lemma 4 For every number p and every response r.

Φk[(0123, r)] = Φk[(p, r)]

Φk[(0123, ∗)] = Φk[(p, ∗)]

Proof. Consider number 0123 and some number p. Then from lemma 2 we
got that there is transformation ψ, such that ψ(0123) = p. If we take for lemma 1
sequence with one move (0123, r), with some response r, then Φk[(0123, r)] =
Φk[(ψ(0123), r)] = Φk[(p, r)]. As well it’s obvious that Φk[(0123, ∗)] = Φk[(p, ∗)]
because

Φk[(0123, ∗)] =
∑
r

Φk[(0123, r)] =
∑
r

Φk[(ψ(0123), r)] =
∑
r

Φk[(p, r)] = Φk[(p, ∗)]

Assertion was proved.
Note. The same is true for Λ function.

5

1.3 The equivalence classes.

We call two numbers p and q are equivalent relative to sequence of turns
(t1, r1) . . . (tn, rn) (p ∼ q) if ∃ψ : ψ(p) = q and ψ(ti) = ti, 1 ≤ i ≤ n.

Lemma 5 The relation p ∼ q is equivalence relation.

Proof.

1. Lets prove that a ∼ a (reflexivity).

It’s obvious. It suffices to take the identity transformation.

2. If a ∼ b, then b ∼ a (symmetry).

If a ∼ b, then ∃ψ : ψ(a) = b, ψ(ti) = ti. Every transformation has inverse
transformation ψ−1 : ψ−1(b) = a, ψ−1(ti) = ti. Thus the symmetry is
proved.

3. If a ∼ b and b ∼ c, then a ∼ c (transitivity).

If a ∼ b, then ∃ψ1 : ψ1(a) = b, ψ1(ti) = ti. And if b ∼ c, then ∃ψ2 :
ψ2(b) = c, ψ2(ti) = ti. It’s obvious that ψ2 ◦ ψ1(a) = ψ2(b) = c and
ψ2 ◦ ψ1(ti) = ψ2(ti) = ti. Thus the transitivity is proved.

Lemma 6 If two numbers p and q belongs one equivalence class, for sequence
(t1, r1) · · · (tn, rn) then ∀k, ∀r

Φk[(t1, r1) · · · (tn, rn)(p, r)] = Φk[(t1, r1) · · · (tn, rn)(q, r)]

Φk[(t1, r1) · · · (tn, rn)(p, ∗)] = Φk[(t1, r1) · · · (tn, rn)(q, ∗)]

Proof. If p ∼ q, then ∃ψ : ψ(p) = q, ψ(ti) = ti. Using lemma 1, we got

Φk[(t1, r1) · · · (tn, rn)(p, r)] = Φk[(ψ(t1), r1) · · · (ψ(tn), rn)(ψ(p), r)] =

= Φk[(t1, r1) · · · (tn, rn)(q, r)]

Analogously,

Φk[(t1, r1) · · · (tn, rn)(p, ∗)] =
∑
r

Φk[(t1, r1) · · · (tn, rn)(p, r)] =

=
∑
r

Φk[(ψ(t1), r1) · · · (ψ(tn), rn)(ψ(p), r)] =
∑
r

Φk[(t1, r1) · · · (tn, rn)(q, r)] =

= Φk[(t1, r1) · · · (tn, rn)(q, ∗)]

Assertion was proved.
Note. The same is true for Λ function.

6

1.4 Set of first moves.

Lemma 7 For first move is enough to consider only the number 0123, the rest
can be discarded.

Φk[∅] = Φk[(0123, ∗)]

Proof. To find Φk[∅] we need to look over all possible numbers from Ω as
first turn and take minimum estimation

Φk[∅] = min
p∈Ω

Φk[(p, ∗)]

From lemma 4 follow that for every number p: Φk[(p, ∗)] = Φk[(0123, ∗)], so

Φk[∅] = min
p∈Ω

Φk[(p, ∗)] = Φk[(0123, ∗)]

Assertion was proved.
Note. The same is true for Λ function.

1.5 Set of second moves.

Lemma 8 If first turn is 0123, then it is sufficient to use only numbers from
set S2 as second turn.

S2 = (0124, 0132, 0134, 0145, 0214, 0231, 0234, 0245, 0456,

1032, 1034, 1045, 1204, 1230, 1234, 1245, 1435, 1456, 4567)

or
Φk[(0123, r)] = min

p∈S2

Φk[(0123, r)(p, ∗)]

Proof. Consider two numbers p and q. If exists transformation ψ such that,
ψ(0123) = 0123, ψ(p) = q, then

Φk[(0123, r)(p, ∗)] = Φk[(ψ(0123), r)(ψ(p), ∗)] = Φk[(0123, r)(q, ∗)]

Similarly, if exists transformation φ such that, φ(0123) = q, φ(p) = 0123,
then

Φk[(0123, r)(p, ∗)] = Φk[(φ(0123), r)(φ(p), ∗)] =

= Φk[(q, r)(0123, ∗)] =
∑
e∈R

Φk[(q, r)(0123, e)]

Using lemma 3, we can see that

∑
e∈R

Φk[(q, r)(0123, e)] =
∑
e∈R

Φk[(0123, r)(q, e)] = Φk[(0123, r)(q, ∗)]

7

That is from two possible second turns p and q, it’s sufficient consider only
number p if we can find transposition ψ or φ.

We realize, with a computer program, the following algorithm.
Lets initialize the empty set S. After that we do a cycle for all numbers

p ∈ Ω and goes over all moves q ∈ S. If doesn’t exist transformation ψ such as
ψ(0123) = 0123, ψ(p) = q or ψ(0123) = q, ψ(p) = 0123, then insert number p
into set S. At the end remove number 0123 from set S because this turn has
already been made. As the result we got set S2 = S\(0123).

Assertion was proved.
Note. The same is true for Λ function.
Now instead of brute force computation for second turn, when we look over

5040 possibilities, it is enough to examine only |S2| = 19 moves.

1.6 Set of third moves.

After a similar reasoning for the third move, we get the following assertion:

Lemma 9 Consider every number s ∈ S2, and two numbers p and q, then if
exists ψ, such that

ψ(0123) = 0123, ψ(s) = s, ψ(p) = q,

then
Φk[(0123, r1)(s, r2)(p, r3)] = Φk[(0123, r1)(s, r2)(q, r3)]

Similarly with building set of second turns for every number s from set S2

it is possible to construct set of third turns S3(s). We remove number s itself
from set S3(s) at the end of calculations.

All sets S3(s) have 7072 items, it means that we got about 7072/19=372.2
numbers for every item of set S2. Now we need to look over only for 7072 possi-
bilities (for turns from one to three), instead of 50392 = 2.5× 107 possibilities.

Note. The same is true for Λ function.

1.7 Subsets estimation.

Lemma 10 ∀R′ ⊂ R and every sequence of turns (t1, r1) . . . (tn, rn), and num-
ber t next assertion is true

Φk[(t1, r1) . . . (tn, rn)(t, ∗)] ≥
∑
r∈R′

Φk[(t1, r1) . . . (tn, rn)(t, r)]

in particular

Φk[(t1, r1) . . . (tn, rn)(t, ∗)] ≥ Φk[(t1, r1) . . . (tn, rn)(t, r)] ∀r ∈ R

Proof. From formula 1 we got that

Φk[(t1, r1) . . . (tn, rn)(t, ∗)] =
∑
r∈R

Φk[(t1, r1) . . . (tn, rn)(t, r)] =

8

=
∑
r∈R′

Φk[(t1, r1) . . . (tn, rn)(t, r)] +
∑
r/∈R′

Φk[(t1, r1) . . . (tn, rn)(t, r)] ≥

≥
∑
r∈R′

Φk[(t1, r1) . . . (tn, rn)(t, r)]

Assertion was proved.
Note. The same is true for Λ function.

1.8 Minimal estimation.

Minimizing amount of 7th. If we find move which has estimation equals 0
then it is best estimation and we don’t need to do further search.

Minimizing average game length. Let cardinality of set of recent numbers
is |S| and we do k-th turn. If some move splits set of recent numbers to subsets
with at most one item then it’s best turn (all others can be pruned) and sum of
turns equals Λ = k + (|S| − 1)(k + 1) = |S|(k + 1)− 1.

1.9 Fast estimation.

Minimizing amount of 7th. Let the sequence of turns (t1, r1) . . . (tn, rn)
have been made and we count 7th. Denote S = (s1, s2 . . .) as set of numbers,
which satisfies all of the turns from the sequence. In some cases when set S
consists of low amount of items, we can immediately obtain the estimation.

If we do the seventh turn then

Φ7[(t1, r1) . . . (tn, rn)] =

{
1 if |S| = 1

5040 if |S| > 1

If we do the sixth turn then

Φ7[(t1, r1) . . . (tn, rn)] =

if |S| = 1 or |S| = 2 or

|S| − 1 |S| = 3 and for one turn si two

others give different responses.

If we do turn from first to fifth

Φ7[(t1, r1) . . . (tn, rn)] =

if |S| = 1 or |S| = 2 or

0 |S| = 3 and for one turn si two

others give different responses.

Later we will count not only 7th but 6th, 5th etc. So the above formula can
be extended.

If we do k-th turn.

Φk[(t1, r1) . . . (tn, rn)] =

{
1 if |S| = 1

5040 if |S| > 1

9

If we do (k − 1)-th turn.

Φk[(t1, r1) . . . (tn, rn)] =

if |S| = 1 or |S| = 2 or

|S| − 1 |S| = 3 and for one turn si two

others give different responses.

If we do turn from first to (k − 2)-th.

Φk[(t1, r1) . . . (tn, rn)] =

if |S| = 1 or |S| = 2 or

0 |S| = 3 and for one turn si two

others give different responses.

Minimizing average game length. If we do k-th turn and |S| = 1 or |S| = 2
or |S| = 3 and for one turn si two others give different responses, then

Λ[(t1, r1) . . . (tn, rn)] = k + (|S| − 1)(k + 1) = |S|(k + 1)− 1

1.10 Cutoffs for turns 4-6.

For turns 1-3 we built the sets which can strictly accelerate the algorithm.
Analogously we can build sets for turns 4-6, but unfortunately they need a lot
of operating memory. Now we describe how to prune some of the numbers for
turns from four to six.

Note. In practice all of next prunes were used only for solving sequence
(0123,0.1)(1245,0.0) by the exact algorithm.

1.10.1 Absent digits.

Let we do some sequence of turns (t1, r1) . . . (tn, rn). Denote S = (s1, s2 . . .)
set of numbers which satisfy all of the turns from sequence. Assume that all
numbers s1, s2 . . . do not contain some digits D = (d1, d2 . . .). Suppose that
absent digits are in ascending order d1 < d2 < . . . Consider some number p,
which has one or more absent digits. If number p, has only absent digits then it
can be pruned, because it does give nothing. If number p has from one to three
absent digits, then they should go in strict ascending order d1, d2 . . . , otherwise
this number can be pruned. Let us illustrate this by example.

Let the sequence of turns is (0123,0.1)(1245,0.0). All of the numbers from
set S don’t contain digits D = (1, 2, 4, 5). Consider the number 4058. It has two
absent digits 4 and 5. This number can be pruned because the number 1028 is
equivalent to the number 4058.

1.10.2 Uncalled digits.

Analogous with absent digits we can use uncalled digits. Let we have some
sequence of turns (t1, r1) . . . (tn, rn) and A = (a1, a2 . . .) is set of uncalled digits.
Assume that uncalled digits are in ascending order, a1 < a2 < . . . It’s possible

10

to prune numbers which have absent digits, which are not ordered in ascending
order. Consider the example.

Let we made sequence of turns (0123,0.1)(1245,0.2). Set of uncalled digits is
A = (6, 7, 8, 9). Consider the number 7601. It’s obviously that it can be pruned,
because of the number 6701, which is equivalent to it. Analogously, the number
7123, can be pruned because of the number 6123.

Note. The only distinction from absent digit is that it’s not possible to
prune all of the numbers which have only uncalled digits. From all of the
numbers with uncalled digits only we should consider number 6789.

1.10.3 Numbers which split set of recent numbers into one group.

Assume that we do sequence of turns (t1, r1) . . . (tn, rn). It’s obvious that if
some number splits set of recent numbers into only one group then this turn is
not best and can be pruned.

1.11 For several turns we got the same response.

Consider sequence of turns (t1, r1) · · · (tn, rn). Split all numbers t1 · · · tn on
groups with same response. Note Tb.c as set of numbers with same response b.c,
where b is amount of bulls and c is amount of cows.

Example. Let we have sequence of three turns
(0123,0.1)(1234,0.1)(5678,0.2), then T0.1 = {0123, 1234}, T0.2 = {5678}.
We can present the sequence using alternate form (T0.1, 0.1)(T0.2, 0.2).

Lemma 11 Let we have the sequence of turns (t1, r1) · · · (tn, rn), which has
alternative form (Tb1.c1 , b1.c1) . . . (Tbl,cl , bl.cl), and two numbers p and q. Let
we have transformation ψ such that all set of numbers Tb.c with same responses,
transform to itself. ∀b,∀c ψ(Tb.c) = Tb.c and number p moves to number q
ψ(p) = q. Then for each response r and each k

Φk[(t1, r1) · · · (tn, rn)(p, r)] = Φk[(t1, r1) · · · (tn, rn)(q, r)]

Proof. Using lemma 1 and that order of turns is not important we got

Φk[(t1, r1) · · · (tn, rn)(p, r)] = Φk[(Tb1.c1 , b1.c1) . . . (Tbl,cl , bl.cl)(p, r)] =

= Φk[(ψ(Tb1.c1), b1.c1) . . . (ψ(Tbl,cl), bl.cl)(ψ(p), r)] =

= Φk[(Tb1.c1 , b1.c1) . . . (Tbl,cl , bl.cl)(q, r)] = Φk[(t1, r1) · · · (tn, rn)(q, r)]

Assertion was proved.
Note. The same is true for Λ function.
Lemma 11 is extension of lemma 1, because numbers ti don’t have to move to

itself under transformation ψ. It’s sufficient only that all sets with same response
move to themselves. Using lemma 11, it’s possible to reduce cardinality of sets
of third turns when we got the same response on first and second turns.

11

2 Algorithms.

2.1 The exact algorithm.

The exact algorithm always gives exact estimation. It has two arguments set
of numbers S, which satisfy all of the previous moves, and upper estimate β.
About estimate β is written in the section about alpha-beta pruning. Algorithm
looks over all possible numbers t ∈ Ω. After each of them set S will be split
on subsets with same responses S1(t) . . . Sk(t), now we need to find estimate for
all this subsets, recursively calling the same algorithm. The estimate of turn t
will be a sum of estimates of all subsets S1(t) . . . Sk(t). Minimal estimate for all
numbers will be the exact estimation of set S.

2.1.1 Last layer algorithm.

Since we know that sixth turn is last turn it is possible to strictly accelerate
algorithm because we should do such turn t that after it all subsets Si(t) consist
of only one item or empty. So, if for some i |Si(t)| > 1 then we go to the next
turn. If amount of resent numbers more than 14, then we couldn’t solve all
numbers using seven or fewer turns, so we can immediately return maximum
estimate. If amount of resent numbers equals 14, then we should search using
only numbers from set S.

This algorithm always get the exact estimate and uses for all algorithms.

Minimizing 7th. At first looks over only numbers from set S. If such turn
splits S on groups with only one item |S1(t)| = · · · = |Sn(t)| = 1, then it is best
turn and estimate equals |S| − 1.

After that we should look over all other turns. If all groups consist of only
one item then it is best turn and amount of 7th equals |S|.

If we still couldn’t find move which split set S on groups with only one item
then algorithm returns estimate 5040, which is worse than any other estimate.

Minimizing average game length. At first looks over only numbers from
set S. If such turn splits S on groups with only one item, then it is best turn
and estimate equals Λ = 6 + 7(|S| − 1) = 7|S| − 1.

After that we should look over all other turns. If all groups consist of only
one item then it is best turn and amount of 7th equals Λ = 7|S|.

If we still couldn’t find move which split set S on groups with only one item
then algorithm returns estimate equals 5040× 7, which is worse than any other
estimate.

2.2 Heuristic algorithms.

Heuristic algorithms not always give exact estimation, but they are much faster
than the exact algorithm. Therefore, we will successively narrow the range of
them use, gradually moving to the exact algorithm. For search of minimizing

12

amount of 7th crush algorithm is better, while Larmouth’s algorithm is better
for minimizing average game length.

2.2.1 Crush algorithm.

Let we have some set of numbers S = (s1, s2 . . .), satisfying all of the previous
moves.

We iterate through all possible moves t. Each of them split set S into subsets
with the same responses S1(t) . . . Sk(t). Denote ni(t) = |Si(t)| (

∑
ni(t) = |S|).

We suppose that all subsets Si(t) sorted by its size, that is n1(t) ≥ n2(t) ≥ . . .
Suppose that for the move t we got subsets with sizes n1(t), n2(t) . . . , and

for the move p we got subsets with sizes n1(p), n2(p) . . . Assume that move t
is better, than move p if n1(t) < n1(p) or n1(t) = n1(p) and n2(t) < n2(p)
etc. For example turn with subsets sizes 18, 18, 17 . . . is better than turn with
subsets sizes 18, 18, 18 . . . Crush algorithm selects move which splits set S on
smaller parts than all other moves.

Additionally we’ll use next rules.

• If found turn t, such that n1(t) = 1, then

1. if t ∈ S then it’s best turn.

2. if t /∈ S, then further search looks over of turns only from S.

• From two turns t ∈ S with subsets sizes n1(t) . . . nk(t) and p /∈ S with
subsets sizes n1(p) . . . nk(p) such that n1(t) = n1(p) . . . nk(t) = nk(p),
we’ll select turn t as the best. This means that from moves with same
subsets sizes we prefer turns from set S.

2.2.2 Larmouth’s algorithm.

Larmouth’s algorithm is used from minimizing game length.
We iterate through all possible moves t. Each of them split set S into subsets

with the same responses S1(t) . . . Sk(t). Denote ni(t) = |Si(t)| (
∑
ni(t) = |S|).

Denote belong function

IN(t, S) =

{
1 if t ∈ S
0 if t /∈ S

The best turn is turn which minimizes function

F (t) =
∑

ni(t)>1

ni(t) log(ni(t))− 2 log 2× IN(t, S)

13

2.3 Accelerations of algorithm.

Analogously with last layer algorithm it’s possible to immediate return maxi-
mum estimation on pre last layer if amount of recent numbers is greater than
1 + 13 + 132.

Before to do a search for all possibilities we’ll search only from recent num-
bers, recursively call search algorithm. If estimate e which we get is less than
upper estimate β then it’s possible to lower upper estimate β = e.

2.4 Notation of algorithms.

Further we’ll use next names of algorithms.

Minimizing 7th.

1. crush35 - crush algorithm is used for turns 3-5, for all others exact algo-
rithm is used.

2. crush45 - crush algorithm is used for turns 4, 5 only.

3. crush5 - crush algorithm is used for turn 5 only.

4. exact - only exact algorithm is used.

Minimizing average game length.

1. avg35 - Larmouth algorithm is used for turns 3-5, for all others exact
algorithm is used.

2. avg45 - Larmouth algorithm is used for turns 4, 5 only.

3. avg5 - Larmouth algorithm is used for turn 5 only.

Note. For all of the algorithms for sixth turn the exact algorithm is used.

2.5 Algorithm extension for counting 6th, 5th etc.

Note. This section concerns only minimizing 7th algorithms.
Below we’ll build trees for different algorithms for online play with man.

Quite often we can see that amount of 7th equals to zero. In this case it’s
possible to find turn which minimizes amount of 6th. If we can find turn that
minimizes amount of 6th to zero, then we minimize amount of 5th etc.

The search algorithm is written such that it can minimize not only 7th but
and 6th, 5th etc. It uses set of recent numbers S, upper estimate β and two
additional parameters,

count - means what do we need to count: 7th, 6th. . .
mde - shows max depth to which we want to use the exact algorithm, (for

the last layer the exact algorithm is always used). If we count 7th then for sixth

14

turn we use last layer algorithm. If we want to count 6th then for fifth turn we
use last layer algorithm etc.

Note. If algorithm couldn’t solve all of the numbers for needed amount of
turns then it returns maximum estimate.

3 Algorithm components.

3.1 Alpha-beta pruning.

Alpha-beta pruning is widely used for various games. This greatly speeds up
the search, by the way the estimate is left exact. More information can be found
on the Internet.

3.2 Sets of the second, third turns and fixed the first one.

Using researches we can use only 0123 as the first turn, numbers from set s ∈ S2

as the second turn and numbers from sets S3(s), s ∈ S2 as the third turn.

3.3 Sorting of second and third turns.

It’s well known that looking over
”
good“ turns before

”
bad“ ones accelerates

algorithm, so, while we create sets for the second and third turns S2 and S3(s2),
reorder them in the inverse order.

3.4 Sorting of other turns.

Turns 4-6 will also reorder in inverse order.

3.5 The response table.

Since one often needs to use response function which count amount of bulls and
cows between two numbers, we allocate memory for char array. The size equals
5040× 5040. We fill the array with responses before the search. The array size
is about 24.2 MB.

3.6 The mechanism of the tasks.

For problems which take a lot of time the mechanism of the tasks was created.
At the beginning we should create file jobs.txt. Each line of this file has one
problem with its own parameters. One can see example of the jobs.txt file below.

solve 0123(0,1)+0145(0,1) 7 4 8 #

solve 0123(0,1)+0134(0,1) 7 4 28 #

solve 0123(0,2)+1234(0,1)+4532(0,1) 7 5 3 #

15

At the beginning one can see keyword ”solve” which means that this problem
still need to be solved. During of working different processes take tasks from file
and change keyword ”solve” to another keyword ”taken” to show to other pro-
cesses that this problem already taken for solution. Next the sequence of turns
with responses is written. Finally one can see three parameters of algorithm.

• count - shows what we need to count: 7 - 7th, 6 - 6th etc.

Note. This parameter is not used for minimizing game length.

• mde - defines from which turn program will use heuristic algorithm: 2 -
from third, 3 - from fourth . . .

• β - upper estimate beta.

The mechanism of the tasks allows simultaneously solve several problems
with many threads. It is created such that it’s automatically resume the solving
after computer restarts. Thus the problems can be solved several days.

If it’s necessary to solve several problems with independent results then it’ll
be better place longer counting problems at the beginning of the list. It allows to
make maximum loading of computer because when all of the threads will finish
except one, then it’ll be better if last thread will finish as soon as possible.

4 Projects description.

Project includes several applications. All of them is written under c++ ex-
cept one, which is written under JavaScript and uses for online game between
computer and man.

4.1 Console application ”executor”.

The application uses for tasks calculation which placed in jobs.txt file.

4.2 Windows service.

The service runs several threads of executor.
Calculations for crush5, avg5, exact algorithms take very long time. So we

need to use system service of windows which automatically starts upon computer
starts. Since the computer for calculations has four cores the service runs four
thread with low priority, to not hinder of other programs.

4.3 Windows application - bcw.

Helper routines.

• Creating jobs and gather data for transition algorithm (see 5.2).

• Running of crush35, crush45, avg35, avg45 algorithms.

16

• Building of trees.

• Loading tree from file, calculation of its statistics and creation tree initial-
ization string for JavaScript.

• Building html file for tree browsing using jQuery.

• Solving (0123,0.1)(1245,0.0) sequence with the exact algorithm for mini-
mizing 7th.

4.4 Console application ”shutdown”.

The application turns off the computer in special time.
Due to the fact that some problems solving too long, and at night, electricity

is about three times cheaper than during the day, the computer many times
counted the problems at night. This application automatically turns off the
computer when electricity supply meter switches to the daytime rate.

4.5 Tree application (written on JavaScript).

Online game between computer and man.

• Loading tree and counting of its statistics.

• Game with man using storing tree.

5 Minimizing 7th results.

5.1 Crush35 and crush45 algorithms.

Since crush algorithm is much faster the the exact one at first we run crush35
algorithm. Then we run crush45 algorithm only for cases where estimate of 7th
is greater than zero with upper estimates which we got from crush35 algorithm.
Further we’ll do the same for crush5 and exact algorithms. Amount of 7th is

17

showed in next table.

amount of first
numbers turn crush35 crush45

1440 0123 0.1 76 53
1260 0123 0.2 22 10
720 0123 1.1 1 0
480 0123 1.0 0 -
360 0123 0.0 0 -
264 0123 0.3 0 -
216 0123 1.2 0 -
180 0123 2.0 0 -
72 0123 2.1 0 -
24 0123 3.0 0 -
9 0123 0.4 0 -
8 0123 1.3 0 -
6 0123 2.2 0 -
1 0123 4.0 0 -

total 5040 99 63

There is no response on very first turn 0123 for which crush35 algorithm
returns estimate equals 5040. That means that the algorithm solve all secret
numbers using up to seven turns.

5.2 Transition from one algorithm to another.

Lets split receiving of estimations for crush5 and exact algorithms into two
phases. At first using the results of algorithm crush45 we got estimations for
crush5 then using the results of crush5 we’ll move to exact algorithm. Calcula-
tions for algorithm crush5 and for exact algorithm take a long time. So solving
of this algorithms splits in several steps.

Lets call the algorithm for which we already have estimates as ”prev”, and
one to which we go as ”next”.
Steps 1-5. Estimation of best turns which we got from prev algorithm..

1. For prev algorithm one find best turn t1 for very first turn (0123,0.1).

2. Consider all of the responses r1 such that amount of 7th with prev algo-
rithm is greater than zero Φprev

7 [(0123, 0.1)(t1, r1)] > 0.

3. For such responses r1 count amount of 7th with next algorithm e1(r1) =
Φnext

7 [(0123, 0.1)(t1, r1)] and use as upper estimate β of prev algorithm
β = Φprev

7 [(0123, 0.1)(t1, r1)].

4. Note E1 =
∑

r1
e1(r1)

18

5. Apply steps 1-4 for very first turn (0123,0.2), we’ll got best turn t2 and its
estimation E2. So, using steps 1-5, for the best turns of prev algorithm,
we found estimates with next algorithm for this turns.

Step 6. Building table for sequences (0123,0.1)(t,0.2).

6. Run next algorithm for all second turns t except (t1, t2, 0132, 0231, 1032,
1230), for sequences (0123,0.1)(t,0.2). For turns t1, t2 we already have
the estimations. As well we suppose that numbers 0132, 0231, 1032, 1230
are not the best. We run next algorithm for them at the end. For next
algorithm we’ll use upper estimate β = min(E1,Φ

prev
7 [(0123, 0.1)(t, 0.2)]).

Note this estimate as e12(t) = Φnext
7 [(0123, 0.1)(t, 0.2)]. Sort moves by

ascending of e12(t) and write them into table. Add numbers t1 and t2
with its estimates to table.

Note. By sorting numbers in step 6 we in fact sort numbers or problems by
time of calculation in descending order. Thus we accelerate the calculations
(see 3.6).
Note. By building of the table for turns (0123,0.1)(t,0.2), we can use it to find
optimal turns and estimates for the first turns (0123,0.1) and (0123,0.2) (see
lemma 3).
Steps 7-8. Searching for amount of 7th for first turn (0123,0.2).

7. Consider turn t with minimal estimation e12(t). For this turn consider all
different responses r, for which number of 7th using next algorithm for se-
quence (0123, 0.2)(t, r) is greater than zero. To accelerate computing we’ll
use prev algorithm estimations. Denote E∗2 as sum of all such estima-
tions which is estimation of sequence (0123, 0.2)(t, ∗) by next algorithm.
If E∗2 < E2 then decrease the best estimation E2 = E∗2 .

8. For numbers t which have e12(t) < E2 do analogous routine and poten-
tially decrease E2. The result estimate E2 is the best estimation of next
algorithm for very first turn (0123, 0.2).

Step 9. Searching amount of 7th for the first turn (0123,0.1).

9. Now we should do the same for the first turn (0123,0.1).

Step 10. Check recent numbers.

10. Make sure than turns t = (0132, 0231, 1032, 1230) are not the best.
For them run next algorithm for sequences (0123, 0.1)(t, 0.1) and
(0123, 0.2)(t, 0.2) with upper estimates β = E1 and β = E2 respectively.

Now we make transitions from crush45 algorithm to crush5.

19

5.3 Crush5 algorithm.

5.3.1 Estimations for the best turns (steps 1-5).

Consider the best number for first turn (0123,0.1), which we got by crush45
algorithm. It’s number 1245. We can get several responses after it, but only
three of them have amount of 7th greater than zero. For this cases run crush5
algorithm.

turn 1 turn 2 crush45 crush5
0123 0.1 1245 0.1 41 38
0123 0.1 1245 0.2 10 7
0123 0.1 1245 0.0 2 1

total 53 46

Analogously, if first turn is (0123,0.2), then best turn is 1435.

turn 1 turn 2 crush45 crush5
0123 0.2 1435 0.1 9 8
0123 0.2 1435 0.2 1 0

total 10 8

Now we got start estimations on maximum amount of 7th. After the first
turn (0123,0.1) the estimate is E1 = 46. And after the first turn (0123,0.2) the
estimate is E2 = 8.

5.3.2 Building of the table (step 6).

t (0123,0.1)(t,0.2)

1234 3
1034 4
1245 7
1204 7
1435 8
1045 9
1456 10
0234 10
0245 15
0214 17
0134 18
0456 30
0145 39
0124 41
4567 ≥ 46

20

5.3.3 The best turn after the first turn (0123,0.2) (steps 7-8).

t (0123,0.1)(t,0.2) (0123,0.2)(t,0.2) E2 = 8

1234 3 1 E2 = 4
1034 4 ×
1245 7 ×
1204 7 ×
1435 8 0
1045 9 ×
1456 10 ×
0234 10 ×
0245 15 ×
0214 17 ×
0134 18 ×
0456 30 ×
0145 39 ×
0124 41 ×
4567 ≥ 46 ×

Consider the second turn 1234. Only for responses 0.1 and 0.2 amount of
7th is greater than zero.

turn 1 turn 2 crush45 crush5
0123 0.2 1234 0.1 - 3
0123 0.2 1234 0.2 - 1
0123 0.2 1234 1.1 1 0

total 4

So if the second turn is 1234, then amount of 7th equals 4. From table we
can see that we don’t need to consider all recent numbers because amount of
7th for them is always greater or equal then four. Thus the best second turn
for crush5 algorithm is 1234, and amount of 7th equals 4.

21

5.3.4 The best turn after (0123,0.1) (step 9).

t (0123,0.1)(t,0.2) (0123,0.1)(t,0.1) E1 = 46

1234 3 ≥ 43 E1 ≥ 46
1034 4 ≥ 42 E1 ≥ 46
1245 7 38 E1 = 46
1204 7 ≥ 39 E1 ≥ 46
1435 8 ≥ 38 E1 ≥ 46
1045 9 ≥ 37 E1 ≥ 46
1456 10 ≥ 36 E1 ≥ 46
0234 10 ≥ 36 E1 ≥ 46
0245 15 ≥ 31 E1 ≥ 46
0214 17 ≥ 29 E1 ≥ 46
0134 18 ≥ 28 E1 ≥ 46
0456 30 ≥ 16 E1 ≥ 46
0145 39 ≥ 7 E1 ≥ 46
0124 41 ≥ 5 E1 ≥ 46
4567 ≥ 46 ×

Consider the second turn 1245 which we got as the best turn of crush45
algorithm. After it no one number gives the better result.

5.3.5 Checking numbers with digits 0-3 (step 10).

At the end we should make sure that numbers with digits from 0 to 3 only are
not the best turns.

turn 1 turn 2 crush5
0123 0.1 0132 0.1 ≥ 46
0123 0.1 0231 0.1 ≥ 46
0123 0.1 1032 0.1 ≥ 46
0123 0.1 1230 0.1 ≥ 46

turn 1 turn 2 crush5
0123 0.2 0132 0.2 ≥ 4
0123 0.2 0231 0.2 ≥ 4
0123 0.2 1032 0.2 ≥ 4
0123 0.2 1230 0.2 ≥ 4

5.3.6 The results of crush5 algorithm.

After the first turn (0123,0.1) the best second turn is 1245 and amount of 7th
is 46. After the first turn (0123,0.2) the best second turn is 1234 and amount
of 7th is 4.

5.4 The exact algorithm.

Unfortunately the exact algorithm take a long time. At the moment one searches
servers to get the exact estimation.

22

5.5 Comparison table of different algorithms.

turn 1 crush35 crush45 crush5
0123 0.1 76 53 46
0123 0.2 22 10 4
0123 1.1 1 0 0
total 7th 99 63 50

6 Minimizing amount of 6th, 5th etc.

We considered only responses on first turn 0123 which give amount of 7th greater
than zero. It is only two responses 0.1 and 0.2. For all others we can minimize
amount of 6th. If minimal amount of 6th is zero then we can minimize amount
of 5th etc. Problem of minimizing 6th is much more easier because we should
search with lower depth. Minimizing table is showed below where first response
4.0 was omitted.

turn 1 7th 6th 5th 4th
0123 0.1 ≤ 46
0123 0.2 ≤4
0123 1.1 0 213
0123 1.0 0 88
0123 0.0 0 84
0123 0.3 0 20
0123 1.2 0 8
0123 2.0 0 4
0123 2.1 0 0 28
0123 3.0 0 0 2
0123 0.4 0 0 0 6
0123 1.3 0 0 1
0123 2.2 0 0 0 4

7 Minimizing average game length results.

The problem of minimizing average game length is much harder than 7th mini-
mizing, but we know the exact estimation for it (see [1] and [2]). So it’s sufficient
to find algorithm with optimal estimation. At first run avg35 and avg45 algo-
rithms. After that run very fast algorithm which is not use heuristic algorithms,
but tries only recent numbers for turns 4-6 (”fso” column).

Write the exact algorithm results from [2] to the ”exact” column of below
table. Let’s compare minimal estimation of avg45 and fso algorithms with the
exact algorithm results. We can see that optimal estimate is not achieved for

23

answers 0.1, 0.2 and 1.1. So, we need to run avg5 algorithm only for that cases.

turn 1 avg35 avg45 fso min(avg45,fso) exact avg5
0123 0.0 1808 1807 1806 1806 1806 1806
0123 0.1 8009 7951 7942 7942 7935 7935
0123 0.2 6828 6817 6818 6817 6808 6808
0123 0.3 1284 1268 1269 1268 1268 1268
0123 0.4 32 32 32 32 32 32
0123 1.0 2400 2394 2393 2393 2393 2393
0123 1.1 3731 3717 3716 3716 3712 3712
0123 1.2 1031 1020 1020 1020 1020 1020
0123 1.3 30 30 30 30 30 30
0123 2.0 845 839 839 839 839 839
0123 2.1 314 312 312 312 312 312
0123 2.2 21 21 21 21 21 21
0123 3.0 97 97 97 97 97 97
0123 4.0 1 1 1 1 1 1

total turns 26 431 26 306 26 296 26 294 26 274 26 274
average length 5.2442 5.2194 5.2175 5.2171 5.2131 5.2131

From the resulting table we see that avg5 algorithm gives the exact estima-
tion. Thus, the minimum possible length of the game is reached.

8 Tree building.

To create program which guesses secret numbers and not use long calculations
we need to preliminary build the tree and store it to file, then load the tree in
separate program and use it without any calculations.

Minimizing 7th. During of tree building we’ll minimize not only 7th. If
amount of 7th for some node equals to zero we’ll minimize 6th. If exists turn
which have amount of 6th equals to zero, then we’ll minimize 5th etc. To
minimize 6th, 5th we use the exact algorithm. To minimize 7th for first turns
(0123,0.1) and (0123,0.2), we’ll use one of the algorithms crush45, crush5. Lets
call such algorithms as optimized ones and note them as crush45o, crush5o. The
algorithms have the same amount of 7th with its not optimized copies but they
strictly reduce amount of 6th, 5th etc. To accelerate construction of the tree we
use preliminary counted first three turns.

During of tree building for every node we store additional parameter n− th,
which means from what we need start to count for its children. For example if
n − th = 5 then all of the children start to count amount of 5th. As well we
store estimation itself e, which helps for tree building. For example if n− th = 5
and e = 30, then sum of 5th for all children equals to 30.

24

Minimizing average game length. During of tree building for every node
we store estimate e, which helps for tree building. For example if e = 30, then
sum of estimations of all children equals to 30. We use preliminary counted first
three turns also.

8.1 Tree checking.

For tree checking program on javascript is used. It loaded tree and run for all
secret numbers until it get response 4.0. After it program gathers statistics how
many numbers were guessed using exact seven, six etc. turns, and how many
totally turns is needed to guess secret numbers.

The program constructs files for tree browsing. The example you
can see here - http://slovesnov.users.sourceforge.net/?bullscows_

crush5oTree,english.

8.2 Realizing of algorithm on JavaScript.

After successful checking of built trees using program on c++ we can create web
implementation of algorithm. In order not to load server we create program on
JavaScript.

JavaScript language does not use pointers. So for every tree node we assign
unique identifier id. Instead of children’s pointers we’ll use them id-s.

The goal is to make size of script as small as possible, so we’ll use next rules

1. The tree is given by one string. The symbol
”
!“ is used, as nodes separator.

2. We store all of the items in sequence, that is the first item has id = 0, the
second one id = 1 etc. Thus, we don’t need to use id as parameter. All
what we need is index of best number (from 0 to 5039) and array of id-s
of children for all possible responses.

3. Every tree node has children. Lets enumerate all responses. The total
amount of responses is 14, but we will not use response 4.0, so we’ll use
13 id-s of children.

4. We write all of the parameters using symbols with ASCII codes from 35
to 127, without symbol

”
\“(which has ASCII code 92), because it needs

to use two symbols to pass it to JavaScript. So we use 92-th system of
numeration. The symbols which have ASCII codes greater than 127 are
not used because they are recognized differently by different browsers.
The maximum number what we need to pass is lower than 92×92, so for
passing every number we need up to two bytes.

5. If node has no children then array of id-s of children is not passed as
parameter.

6. It’s possible to pass array of children id-s by two ways. The first one is
to pass all 13 children id-s (two bytes for every id). The second one pass

25

http://slovesnov.users.sourceforge.net/?bullscows_crush5oTree,english
http://slovesnov.users.sourceforge.net/?bullscows_crush5oTree,english

pairs
”
array index (one byte from 0 to 13) and index value (2 bytes)“.

Amount of bytes using second type is a multiple of three. At the same
time amount of bytes using first type equals 26. Thus, it’s always possible
to define what type of passing is used. During node storing we’ll use type
of passing which has the shorter string.

By using all of this optimizations the size of tree string reduces from 222 KB
to 31.6 KB.

9 Calculation times.

9.1 Crush35 and crush45 algorithms.

Sample row

crush35 (0,1) max=5040 e=76 time 00:00:01 best=1456

means that it was ran crush35 algorithm after turn (0123,0.1) with upper esti-
mate 5040. The result is new estimate 76 with best number 1456. The calcula-
tions take one second.

solving 0123(*.*) count 7th

crush35 (0.0) max=5040 e= 0 time 00:00:00 best=4567

crush35 (0.1) max=5040 e=76 time 00:00:01 best=1456

crush35 (0.2) max=5040 e=22 time 00:00:01 best=1234

crush35 (0.3) max=5040 e= 0 time 00:00:00 best=4567

crush35 (0.4) max=5040 e= 0 time 00:00:00 best=1456

crush35 (1.0) max=5040 e= 0 time 00:00:00 best=0134

crush35 (1.1) max=5040 e= 1 time 00:00:00 best=1456

crush35 (1.2) max=5040 e= 0 time 00:00:00 best=4567

crush35 (1.3) max=5040 e= 0 time 00:00:00 best=1456

crush35 (2.0) max=5040 e= 0 time 00:00:00 best=4567

crush35 (2.1) max=5040 e= 0 time 00:00:00 best=4567

crush35 (2.2) max=5040 e= 0 time 00:00:00 best=1456

crush35 (3.0) max=5040 e= 0 time 00:00:00 best=4567

total 99 time 00:00:03

crush45 (0.1) max= 76 e=53 time 00:05:31 best=1245

crush45 (0.2) max= 22 e=10 time 00:02:31 best=1435

crush45 (1.1) max= 1 e= 0 time 00:00:04 best=1456

total 63 time 00:08:07

After using of crush35 algorithm, only for cases where amount of 7th is greater
than zero, we run crush45 algorithm, with upper estimate which we got from
crush35 algorithm.

26

9.2 Crush5 algorithm.

Crush5 algorithm ran using tasks mechanism so there are no data about time
of calculation.

9.3 Avg35 and avg45 algorithms.

Sample row

avg35 (0.0) max=**** e=1808 time 00:00:01 best=4567

means that it was ran avg35 algorithm after turn (0123,0.0) with maximum
upper estimate. The result is new estimate 1808 with best number 4567. The
calculations take one second.

solving 0123(*.*)

avg35 (0.0) max=**** e=1808 time 00:00:01 best=4567

avg35 (0.1) max=**** e=8009 time 00:00:02 best=1245

avg35 (0.2) max=**** e=6828 time 00:00:05 best=1435

avg35 (0.3) max=**** e=1284 time 00:00:01 best=1245

avg35 (0.4) max=**** e= 32 time 00:00:00 best=1230

avg35 (1.0) max=**** e=2400 time 00:00:01 best=0456

avg35 (1.1) max=**** e=3731 time 00:00:03 best=0145

avg35 (1.2) max=**** e=1031 time 00:00:00 best=0245

avg35 (1.3) max=**** e= 30 time 00:00:00 best=1234

avg35 (2.0) max=**** e= 845 time 00:00:00 best=0456

avg35 (2.1) max=**** e= 314 time 00:00:00 best=0245

avg35 (2.2) max=**** e= 21 time 00:00:00 best=0132

avg35 (3.0) max=**** e= 97 time 00:00:00 best=0245

avg35 (4.0) max=**** e= 1 time 00:00:00 best=0123

total 26 431 avg=5.2442 time 00:00:17

avg45 (0.0) max=1808 e=1807 time 00:08:23 best=4567

avg45 (0.1) max=8009 e=7951 time 00:29:51 best=1456

avg45 (0.2) max=6828 e=6817 time 00:32:22 best=1435

avg45 (0.3) max=1284 e=1268 time 00:06:30 best=1435

avg45 (0.4) max= 32 e= 32 time 00:00:00 best=-001

avg45 (1.0) max=2400 e=2394 time 00:11:44 best=0456

avg45 (1.1) max=3731 e=3717 time 00:19:45 best=0245

avg45 (1.2) max=1031 e=1020 time 00:05:22 best=0245

avg45 (1.3) max= 30 e= 30 time 00:00:01 best=-001

avg45 (2.0) max= 845 e= 839 time 00:03:48 best=0245

avg45 (2.1) max= 314 e= 312 time 00:01:16 best=0145

avg45 (2.2) max= 21 e= 21 time 00:00:00 best=-001

avg45 (3.0) max= 97 e= 97 time 00:00:15 best=-001

avg45 (4.0) max= 1 e= 1 time 00:00:00 best=0123

total 26 306 avg=5.2194 time 01:59:22

27

9.4 Avg5 algorithm.

Avg5 algorithm ran using tasks mechanism so there are no data about time of
calculation.

10 Edition history.

• Edition 2.1 5 November 2013 (small changes)

• Second edition 1 November 2011

– Article was strongly extended and supplemented.

– Article was translated from Russian to English.

– The site of project was created.

• First edition 25 December 2008 (only in Russian)

References

[1] John Francis, Strategies for playing MOO, or Bulls and Cows.

http://slovesnov.users.sourceforge.net/bullscows/bulls_and_

cows.pdf

Original URL http://www.jfwaf.com/Bulls%20and%20Cows.pdf

[2] Tetsuro Tanaka, An Optimal MOO Strategy, Game Programming Work-
shop - Japan.

28

http://slovesnov.users.sourceforge.net/bullscows/bulls_and_cows.pdf
http://slovesnov.users.sourceforge.net/bullscows/bulls_and_cows.pdf
http://www.jfwaf.com/Bulls%20and%20Cows.pdf

	Introduction.
	Theory.
	Notation.
	Transformations.
	The equivalence classes.
	Set of first moves.
	Set of second moves.
	Set of third moves.
	Subsets estimation.
	Minimal estimation.
	Fast estimation.
	Cutoffs for turns 4-6.
	Absent digits.
	Uncalled digits.
	Numbers which split set of recent numbers into one group.

	For several turns we got the same response.

	Algorithms.
	The exact algorithm.
	Last layer algorithm.

	Heuristic algorithms.
	Crush algorithm.
	Larmouth's algorithm.

	Accelerations of algorithm.
	Notation of algorithms.
	Algorithm extension for counting 6th, 5th etc.

	Algorithm components.
	Alpha-beta pruning.
	Sets of the second, third turns and fixed the first one.
	Sorting of second and third turns.
	Sorting of other turns.
	The response table.
	The mechanism of the tasks.

	Projects description.
	Console application "executor".
	Windows service.
	Windows application - bcw.
	Console application "shutdown".
	Tree application (written on JavaScript).

	Minimizing 7th results.
	Crush35 and crush45 algorithms.
	Transition from one algorithm to another.
	Crush5 algorithm.
	Estimations for the best turns (steps 1-5).
	Building of the table (step 6).
	The best turn after the first turn (0123,0.2) (steps 7-8).
	The best turn after (0123,0.1) (step 9).
	Checking numbers with digits 0-3 (step 10).
	The results of crush5 algorithm.

	The exact algorithm.
	Comparison table of different algorithms.

	Minimizing amount of 6th, 5th etc.
	Minimizing average game length results.
	Tree building.
	Tree checking.
	Realizing of algorithm on JavaScript.

	Calculation times.
	Crush35 and crush45 algorithms.
	Crush5 algorithm.
	Avg35 and avg45 algorithms.
	Avg5 algorithm.

	Edition history.
	References.

