
Alexey Slovesnov

email slovesnov@yandex.ru

site http://slovesnov.users.sf.net/?bullscows,english

Optimal algorithms for mastermind
and bulls-cows games.

Abstract.

The article concerns two optimization criteria of mastermind and bulls-cows
games. The first one is minimizing average amount of turns to guess arbitrary
secret number (minimizing average game length). It will be proved that there
is no algorithm which can guess all numbers for up to six turns for bulls and
cows game, but there are algorithms which can guess all of the numbers for
up to seven turns. Also it will be proved that there is no algorithm which
can guess all numbers for up to four turns for mastermind game, but there
are algorithms which can guess all of the numbers for up to five turns. So the
second optimization criterion is minimizing amount of numbers which algorithm
guesses using exactly seven turns for bulls and cows game and exactly five turns
for mastermind, all others should be guessed for lower number of turns. For all
of optimal algorithms trees with statistics are built. Web application is created
where computer can guess numbers using one of the optimal algorithms.

30 January 2017

Edition 3.1

address of last edition of article
http://slovesnov.users.sf.net/bullscows/bullscows.pdf

mailto:slovesnov@yandex.ru
http://slovesnov.users.sf.net/?bullscows,english
http://slovesnov.users.sf.net/bullscows/bullscows.pdf

Contents

1 Introduction. 2

2 Theory. 3
2.1 Notation. 3
2.2 Transformations. 4
2.3 The equivalence classes. 5
2.4 Sets of first-third moves. 6
2.5 Algorithms accelerations. 7
2.6 Unused cutoffs. 12

3 Algorithms. 14
3.1 The exact algorithm. 14
3.2 Heuristic algorithms. 14
3.3 Notation of algorithms. 15
3.4 Extension for counting 6-movers, 5-movers etc. 16

4 Projects description. 16
4.1 Windows application - bcw. 16
4.2 Javascript application. 16
4.3 The mechanism of the tasks [only bulls and cows]. 17
4.4 Problems executor [only bulls and cows]. 17
4.5 Windows service [only bulls and cows]. 17

5 Results. 18
5.1 Minimal amount of numbers. 18
5.2 Minimizing average game length. 25

6 Tree building. 27
6.1 Tree building on c++. 27
6.2 Tree building on javascript. 28

7 Edition history. 30

References. 30

1

1 Introduction.

An secret number for bulls-cows game can be four-place decimal with different
digits from 0 to 9. Total amount of secret numbers is 10!/6! = 5040. For
mastermind secret number is four-place digital with digits from 0 to 5. Digits
can repeat. So total amount of secret numbers is 64 = 1296. In common case
such games have three parameters - number of positions, number of different
digits and repeatability (1 - yes, 0 -no). From this point of view bulls-cows game
has parameters (4, 10, 0), mastermind has parameters (4, 6, 1). Optimization
of two game types has two directions.

Minimal average game length. Minimizing of average amount of turns to
guess arbitrary secret number. Since this problem is solved for bulls-cows (see
[1] and [2]), average game length is 26274/5040=5.21, then it’s sufficient to
find algorithm with such average game length. Also such problem is solved for
mastermind game (see [3]). Minimal average game length is 5625/1296=4.34 if
number of turns is arbitrary (six turns is enough) and 5626/1296=4.34 is we can
do maximum five turns. For this optimization type we construct three optimal
algorithms one for bulls-cows game and two for mastermind game.

Minimal amount of numbers. It’s known for bulls-cows game that there is
no algorithm which can guess each secret number using six or less turns. Also
it’ll be proven here. At the same time there are algorithms which can guess
each number using up to seven moves. So the problem is to minimize amount
of numbers which algorithm can guess using exactly seven turns. Similarly for
mastermind game there is no algorithm which can guess any secret number for
up to four turns, but there are algorithms which can do this using maximum
five turns. There are no articles about this criterion were found in the internet
so we need to do exhaustive search. For bulls and cows we’ll prove that minimal
amount of numbers which algorithm can guess using exactly seven turns is 50,
all others are guessed for up to six turns. For mastermind we’ll prove that
minimal amount of numbers which algorithm can guess using exactly five turns
is 539. Also it proves that there is no algorithm which can guess any number
for up to six turns for bulls and cows and there is no algorithm which can guess
any number for up to four turns for mastermind.

Searching of minimal average game length or minimal amount of numbers
are very difficult problems. Let’s try roughly estimate number of operations for
exhaustive search for bulls and cows. It’s obviously that we can use number
0123 as first turn without loss of generality. Turns from second to sixth can be
one of 5039 possibilities each (number 0123 is not used). After for every turn
we can get up to 14 responses, for one of them (four bulls and zero cows) we
don’t need to do further computation. Let suppose that we can reduce average
number of turns in four times, and we can reduce average number of responses
in four times as well. So the estimation for amount of nodes for exhaustive
search is

(
13
4

)6 · (5039
4

)5 ≈ 3.7 × 1018. This estimation looks like huge even for

2

modern computers.
The article consists of several parts: notation and mathematical theory,

algorithms description and components of program, results and trees of optimal
algorithms with statistics. The trees will be used for web application where
computer can guess numbers.

2 Theory.

2.1 Notation.

Response on some number denote as
”

amount of bulls.amount of cows“. For
example, 2.1 means that we got answer two bulls and one cow.

Secret number t with response r name as turn or move and note as (t, r).
Sometimes turn will be written without brackets and comma - 5678 0.1.

Set of all secret numbers for bulls and cows note as Ωb =
(0123, 0124 . . . 9876). For mastermind Ωm = (0000, 0001 . . . 5555). If set Ω is
used without upper index then it means both game types.

Set of all possible answers note as R = (0.0, 0.1 . . . 4.0). It’s the same set for
both game types.

Sequence of turns note as T = (t1, r1) . . . (tn, rn).
Numbers which can be guessed for exactly k attempts are called as

”
k-

movers“.
Minimal amount of numbers which can be guessed using exactly k at-

tempts, for all algorithms, after sequence T = (t1, r1) . . . (tn, rn) note as
Φk[T] = Φk[(t1, r1) . . . (tn, rn)]. If Φ is used without superscript then it means
both game types.

Minimal average game length for all algorithms, after sequence of turns T
note as ∆[T]. Suppose that after sequence of turns T left m secret numbers.
To work with integer values we’ll use analogous function, which equals sum of
number of turns to guess recent secret numbers Λ[T] = m×∆[T].

Consider sequence of turns T = (t1, r1) . . . (tn, rn) and number p. Sum
of amount of turns which can be guessed using exactly k tries, after turns
(t1, r1) . . . (tn, rn) and (n + 1)-th turn p with all possible responses note as
Φk[T (p, ∗)] = Φk[(t1, r1) . . . (tn, rn)(p, ∗)].

Φk[(t1, r1) . . . (tn, rn)(p, ∗)] =
∑
r∈R

Φk[(t1, r1) . . . (tn, rn)(p, r)] (1)

Analogously,

Λ[(t1, r1) . . . (tn, rn)(p, ∗)] =
∑
r∈R

Λ[(t1, r1) . . . (tn, rn)(p, r)] (2)

Numbers consist of four digits. Every digit has its own position from 1 to 4.
First digit has position 1, second one 2, etc. Every digit can be from 0 to 9 for
bulls and cows and from 0 to 5 for mastermind. Denote set of all transformations
of digits and positions from 1 to 4 as Ψ. Items of set Ψ denote as ψ ∈ Ψ.

3

The result of transformation ψ on number t denote as ψ(t).
The result of transformation ψ on set of numbers T = {t1 . . . tn} denote as

set of numbers {ψ(t1) . . . ψ(tn)}. ψ(T) = {ψ(t1) . . . ψ(tn)}.
Denote cardinality (number of elements) of set S as |S|. For example, |Ωm| =

64 = 1296.
Empty set - ∅.
The goal of article is to find Φb

7[∅] for bulls-cows and Φm
5 [∅] for master-

mind, and construct algorithms with optimal estimations. Since it’s known
that Λb[∅] = 26274, Λm[∅] = 5625 and Λm[∅] = 5626 if maximum five turns
are allowed, then we only need to construct such algorithms.

2.2 Transformations.

It’s possible to do any permutation of digits and positions, which in fact does
not change anything, so the following is true:

Lemma 1 Let we have sequence of turns (t1, r1) . . . (tn, rn), and some trans-
formation ψ, then

Φk[(t1, r1) . . . (tn, rn)] = Φk[(ψ(t1), r1) . . . (ψ(tn), rn)]

Λ[(t1, r1) . . . (tn, rn)] = Λ[(ψ(t1), r1) . . . (ψ(tn), rn)]

Lemma 2 [bulls and cows only] For every two numbers t1 ∈ Ωb and t2 ∈ Ωb

there is exists transformation ψ such as ψ(t1) = t2 and ψ(t2) = t1.

Proof. By writing computer program which looks over all possible numbers
t1 ∈ Ωb and t2 ∈ Ωb and all transformations ψ ∈ Ψ, we can make sure that it’s
true.

Example. Consider two numbers 0123 and 4051. Find transformation ψ,
such that ψ(0123) = 4051, ψ(4051) = 0123.

Solution. Consider transformation ψ1, which swaps the digits 0 ↔ 1,
2 ↔ 5, 3 ↔ 4. Number 0123 transforms to number ψ1(0123) = 1054, and
number 4051 transforms to ψ1(4051) = 3120. Now consider place transforma-
tion ψ2 1 ↔ 4, digit from first place goes to fourth place and vice versa. By
applying transformation ψ2 we got ψ2(ψ1(0123)) = ψ2(1054) = 4051. Similar
ψ2(ψ1(4051)) = ψ2(3120) = 0123. Thus the composition ψ = ψ2 ◦ ψ1 yields the
desired result.

Lemma 3 [bulls and cows only] For every two numbers t1 and t2 and every two
responses r1 and r2

Φb
k[(t1, r1)(t2, r2)] = Φb

k[(t1, r2)(t2, r1)]

Φb
k[(t1, r1)(t2, ∗)] = Φb

k[(t2, r1)(t1, ∗)]

4

Proof. From lemma 2 we know that, exists transformation ψ, such that
ψ(t1) = t2, ψ(t2) = t1. Thus, using lemma 1, we have:

Φb
k[(t1, r1)(t2, r2)] = Φb

k[(ψ(t1), r1)(ψ(t2), r2)] = Φb
k[(t2, r1)(t1, r2)]

Since the order of moves is not important, it’s possible to interchange moves
1 and 2, so

Φb
k[(t2, r1)(t1, r2)] = Φb

k[(t1, r2)(t2, r1)]

So first was proved. Similarly,

Φb
k[(t1, r1)(t2, ∗)] =

∑
r

Φb
k[(t1, r1)(t2, r)] =

∑
r

Φb
k[(t2, r1)(t1, r)] = Φb

k[(t2, r1)(t1, ∗)]

Assertion was proved.
Note. The same is true for Λb function.

2.3 The equivalence classes.

We call two numbers p and q are equivalent relative to sequence of turns
(t1, r1) . . . (tn, rn) (p ∼ q) if ∃ψ : ψ(p) = q and ψ(ti) = ti, 1 ≤ i ≤ n.

Lemma 4 The relation p ∼ q is equivalence relation.

Proof.

1. Lets prove that a ∼ a (reflexivity).

It’s obvious. It suffices to take the identity transformation.

2. If a ∼ b, then b ∼ a (symmetry).

If a ∼ b, then ∃ψ : ψ(a) = b, ψ(ti) = ti. Every transformation has inverse
transformation ψ−1 : ψ−1(b) = a, ψ−1(ti) = ti. Thus the symmetry is
proved.

3. If a ∼ b and b ∼ c, then a ∼ c (transitivity).

If a ∼ b, then ∃ψ1 : ψ1(a) = b, ψ1(ti) = ti. And if b ∼ c, then ∃ψ2 :
ψ2(b) = c, ψ2(ti) = ti. It’s obvious that ψ2 ◦ ψ1(a) = ψ2(b) = c and
ψ2 ◦ ψ1(ti) = ψ2(ti) = ti. Thus the transitivity is proved.

Lemma 5 If two numbers p and q belongs to one equivalence class, for sequence
(t1, r1) · · · (tn, rn) then ∀k, ∀r1 . . . rn, ∀r

Φk[(t1, r1) · · · (tn, rn)(p, r)] = Φk[(t1, r1) · · · (tn, rn)(q, r)]

Φk[(t1, r1) · · · (tn, rn)(p, ∗)] = Φk[(t1, r1) · · · (tn, rn)(q, ∗)]

Proof. If p ∼ q, then ∃ψ : ψ(p) = q, ψ(ti) = ti. Using lemma 1, we got

Φk[(t1, r1) · · · (tn, rn)(p, r)] = Φk[(ψ(t1), r1) · · · (ψ(tn), rn)(ψ(p), r)] =

5

= Φk[(t1, r1) · · · (tn, rn)(q, r)]

Analogously,

Φk[(t1, r1) · · · (tn, rn)(p, ∗)] =
∑
r

Φk[(t1, r1) · · · (tn, rn)(p, r)] =

=
∑
r

Φk[(ψ(t1), r1) · · · (ψ(tn), rn)(ψ(p), r)] =
∑
r

Φk[(t1, r1) · · · (tn, rn)(q, r)] =

= Φk[(t1, r1) · · · (tn, rn)(q, ∗)]

Assertion was proved.
Note. The same is true for Λ function.
Values of Φk and Λ for some sequence t1 . . . tn are the same for all equivalent

numbers, so for exhaust search it’s sufficient to explore only one number for each
equivalence class. Let’s call such set as equivalence set for sequence t1 . . . tn.

Algorithm of construction of equivalence set for sequence t1 . . . tn.
Preset set S = (t1 . . . tn), then explore all numbers p ∈ Ω. If there is no exists
transformation ψ such that, ψ(ti) = ti ∀i and ψ(p) ∈ S, then add p to set S.
At the end remove numbers t1 . . . tn from set S because this numbers are from
previous moves and will not be best. So we got equivalence set S for sequence
t1 . . . tn.

2.4 Sets of first-third moves.

2.4.1 Set of first moves.

Consider empty sequence of turns ∅ and build equivalence set for it. For bulls
and cows this set has only one item Sb

1 = (0123) and five items for mastermind
Sm

1 = (0000, 0001, 0011, 0012, 0123). So next assertion is true.

Lemma 6 For the first turn it’s sufficient search only numbers from set S1.

Φk[∅] = min
s1∈S1

Φk[(s1, ∗)] Λ[∅] = min
s1∈S1

Λ[(s1, ∗)]

2.4.2 Set of second moves.

Consider item from set of first moves s1 ∈ S1 and construct equivalence set for
it S2(s1) for sequence s1. It’s sufficient to explore only moves from S2(s1) after
first turn s1. For bulls and cows we got

Sb
2(0123) = (0124, 0132, 0134, 0145, 0214, 0231, 0234, 0245, 0456,

1032, 1034, 1045, 1204, 1230, 1234, 1245, 1435, 1456, 4567)

For mastermind we got five sets Sm
2 (s1), s1 ∈ Sm

1 which have totally 284 items.
So next assertion is true.

6

Lemma 7 If the first turn was s1 ∈ S1, then it’s sufficient to search only items
from set S2(s1).

Φk[(s1, r)] = min
s2∈S2(s1)

Φk[(s1, r)(s2, ∗)] Λ[(s1, r)] = min
s2∈S2(t)

Λ[(s1, r)(s2, ∗)] ∀r

2.4.3 Set of third moves.

Similarly we can got set of third moves. Amount of such sets for mastermind
game is too big, so we use them only for bulls and cows. All of the sets Sb

3(s1, s2)
for bulls and cows totally include 7072 items. Now for first three moves we need
to search only 7072 numbers, instead of 50392 ≈ 2.5× 107.

2.5 Algorithms accelerations.

2.5.1 Order of numbers.

Search algorithm is working faster when it explores best turns at first. Later
we’ll construct trees for optimal algorithms. Most of the best turns satisfy of
all previous moves. It’s true for 95-98% of cases. So at first better to explore
turns which satisfy of all previous moves, then all others.

2.5.2 Subsets estimation.

Lemma 8 ∀R′ ⊂ R and any sequence of turns T = (t1, r1) . . . (tn, rn), and
number t next assertion is true

Φk[T (t, ∗)] ≥
∑
r∈R′

Φk[T (t, r)]

particularly
Φk[T (t, ∗)] ≥ Φk[T (t, r)] ∀r ∈ R

Proof. Using formula 1 we got that

Φk[T (t, ∗)] =
∑
r∈R

Φk[T (t, r)] =
∑
r∈R′

Φk[T (t, r)]+
∑
r/∈R′

Φk[T (t, r)] ≥
∑
r∈R′

Φk[T (t, r)]

Assertion was proved.
Note. The same is true for Λ function.
Let we have sequence T = (t1, r1) . . . (tn, rn), upper bound β and some num-

ber t. Let for some subset of responses R′ ⊂ R we have that
∑

r∈R′
Φk[T (t, r)] ≥ β,

then this number is not best turn and can be pruned.

2.5.3 Minimal estimation.

Minimal amount of numbers. If we find move which has estimation equals
0 then it is best estimation and we don’t need to do further search.

7

Minimizing average game length. Let cardinality of set of recent numbers
is |S| and we do k-th turn. If some number splits set of recent numbers to
subsets with at most one item then it’s best turn (all others can be pruned) and
sum of turns equals Λ = k + (|S| − 1)(k + 1) = |S|(k + 1)− 1.

2.5.4 Fast estimation.

Let the sequence of turns T = (t1, r1) . . . (tn, rn) have been made. Denote
S(T) = (s1, s2 . . .) as set of numbers, which satisfies all of the turns from the
sequence. In some cases when set S is small, we can immediately obtain the
estimation.

Minimal amount of numbers. If we do the seventh turn for bulls-cows and
fifth turn for mastermind then

Φb
7[T] = Φm

5 [T] =

{
1 if |S(T)| = 1

5040 if |S(T)| > 1

If we do the sixth turn for bulls-cows and fourth turn for mastermind then

Φb
7[T] = Φm

5 [T] =

if |S(T)| = 1 or |S(T)| = 2 or

|S(T)| − 1 |S(T)| = 3 and for one of items si

two others give different responses

If we do turn from first to fifth for bulls-cows and from first to third for
mastermind then

Φb
7[T] = Φm

5 [T] =

if |S(T)| = 1 or |S(T)| = 2 or

0 |S(T)| = 3 and for one turn si two

others give different responses

Later we will count not only 7-movers but 6-movers, 5-movers etc for bulls-
cows and 4-movers, 3-movers etc for mastermind (see. 3.4). So the above
formula can be extended.

If we do k-th turn.

Φb
k[T] = Φm

k [T] =

{
1 if |S(T)| = 1

5040 if |S(T)| > 1

If we do (k − 1)-th turn.

Φb
k[T] = Φm

k [T] =

if |S(T)| = 1 or |S(T)| = 2 or

|S(T)| − 1 |S(T)| = 3 and for one turn si two

others give different responses.

8

If we do turn from first to (k − 2)-th.

Φb
k[T] = Φm

k [T] =

if |S(T)| = 1 or |S(T)| = 2 or

0 |S(T)| = 3 and for one turn si two

others give different responses.

Minimizing average game length. If we do k-th turn and |S(T)| = 1 or
|S(T)| = 2 or |S(T)| = 3 and for one turn si two others give different responses,
then

Λ[T] = k + (|S(T)| − 1)(k + 1) = |S(T)|(k + 1)− 1

2.5.5 Numbers which split set of recent numbers into one group.

Assume that we do sequence of turns (t1, r1) . . . (tn, rn). It’s obvious that if
some number splits set of recent numbers into only one group then this turn is
not best and can be pruned.

2.5.6 Penultimate turn algorithm.

Penultimate turn should be such turn t that after it all of subsets Si(t) consist
of only one item or empty. If for some i |Si(t)| > 1 then we go to the next turn.
Total number of different responses is 14. So if amount of resent numbers is
more than 14, then we couldn’t solve all of them using certain number of turns,
so we can immediately return maximum estimate. If amount of resent numbers
equals to 14, then we should search using only recent numbers. This algorithm
always get the exact estimate and is used for all algorithms.

Minimal amount of numbers. At first looks over only numbers from set S.
If such turn splits S on groups with only one item |S1(t)| = · · · = |Sn(t)| = 1,
then it is best turn and estimate equals |S| − 1. After that we should look over
all other turns. If all groups consist of only one item then it is best turn and
estimate is |S|. If we still couldn’t find move which splits set S on groups with
only one item then algorithm returns worst estimate.

Minimal average game length. Suppose that we do k-th turn. For example
we do sixth turn for bulls-cows and count 7-movers. At first looks over only
numbers from set S. If number splits S on groups with only one item, then it
is best turn and estimate equals k + (|S| − 1)(k + 1) = (k + 1)|S| − 1. After
that we should look over all other turns. If all groups consist of only one item
then it is best turn and estimate equals (k+ 1)|S|. If we still couldn’t find move
which splits set S on groups with only one item then algorithm returns worst
estimate.

9

2.5.7 Cutoffs of last but two turn.

Minimal amount of numbers. Similarly with penultimate turn algorithm
it’s possible to immediate return maximum estimation for last but two turn if
amount of recent numbers is greater than 1 + 13 + 132 = 183. If amount of
recent numbers equals 183 then it’s sufficient to explore only recent numbers.
We can reduce number 183 for bulls and cows game. The first turn can split
recent number for maximum 14 groups. For one of them with response 4.0 we
don’t need further searching. For answer 2.2 we can get maximum 6 numbers,
for response 1.3 - 8, for 0.4 - 9. For rest 13−3 = 10 groups we can get maximum
13 numbers. So we can guess maximum 1 number for one turn, maximum 13
numbers for two turns, and maximum 10 · 13 + 6 + 8 + 9 = 153 for three turns.
So totally we have 1 + 13 + 153 = 167 turns.

Fast cutoffs. Let we have upper estimation β, and number t which splits
recent numbers on sets S1 · · ·Sn. Assume that for some of them Si, 1 ≤ i ≤ m
we already get estimations ei. Sets Si will be estimated by penultimate turn
algorithm and sometimes turn t can be pruned.

Minimal amount of numbers. Minimal estimate of set Si by penul-
timate turn algorithm equals |Si| − 1. So minimal estimation of turn t, after

estimation of first m sets, equals E(m) =
m∑
i=1

ei +
n∑

i=m+1

(|Si|−1). If E(m) ≥ β,

then turn t can be pruned. If we count one more estimation em+1, we can count
E(m+ 1) and potentially prune the turn.

Average game length. Assume that penultimate turn has number k−1.
Minimal estimation of set Si by penultimate turn algorithm equals (k+ 1)|Si|−
1. So minimal estimation of turn t, after estimation of first m sets, equals

E(m) =
m∑
i=1

ei +
n∑

i=m+1

((k+1)|Si|−1) If E(m) ≥ β, then turn t can be pruned.

If we count one more estimation em+1, we can count E(m+ 1) and potentially
skip the turn.

2.5.8 Equivalent splits.

Consider two numbers p and q. Let both of them are recent numbers or both of
them are not recent numbers. Assume that p and q split recent numbers set for
the same amount of subsets Sp1

. . . Spn
and Sq1 . . . Sqn . Take minimal number

mpi from set Spi . Order sets Spi by them minimal numbers mpi < mpi+1. The
same do for Sqi . If set Spi equals Sqi for all i, then numbers p and q give the
same splits and one of them can be pruned.

It’s obvious that all of the sets with only one item has the same estimation.
The same is true for sets with two items and for sets with three items such that
for one item two others have different responses. So for number p, we to count
three numbers: amount of sets with size one np1 , amount of sets with size two

10

np2 , and amount of special sets with size three np3 ; and all other sets Sp1 . . . Spn .
Now for comparing p and q we need to compare npi and nqi , next other sets.
In this case amount of pruned turns increases because it’s not important which
numbers have sets with size 1, 2 and special sets with size 3.

The total number of splits equals |Ω| multiples by depth count. It’s not big
number so we can store all of splits. For searching equivalent splits we need to
go over maximum |Ω| of splits, which takes a long time. To reduce it set hash
code for each split and go over only for splits with same hash code.

2.5.9 Hashing.

Let we need to estimate some set S. It’s possible that search algorithm is
already estimate this set earlier. If store set and estimation then it’s possible to
not estimate it and just return stored estimation. Consider set Ω = (ω1 · · ·ω|Ω|).
Subset S ⊂ Ω can be set by bit sequence with length |Ω|, i-th bit of sequence
equals one if ωi ∈ S. The total amount of sequences is huge 2|Ω|, so we store
only some of them. The algorithms have next options (see 3).

• Starting from some number of turn mde (except penultimate and last
turn), we use heuristic algorithm. This parameter defines algorithm type.

• Only recent numbers are explored.

For fast searching of set S in hash table we use the same idea which was
used for equivalent splits (hash code of sets).

Hash table item. To store set S with estimation, we use:

• bit sequence with length |Ω|

• algorithm type - mde

• one bit heuristic. Bis is set if we use heuristic estimation.

• one bit fromSetOnly. Bit is set if we explore turns only from set S

• number of current turn n

• estimation flag (the exact estimation or ≥ β)

• estimation of set or upper bound β (depends on estimation flag)

• the best turn (for tree building)

Hash table checking. If set S is found in hash table that is bit sequence,
algorithm type mde, heuristic and fromSetOnly bits are the same, then return
value depends on estimation flag.

11

Estimation flag - the exact estimation. It’s possible three options.

1. Number of current turn equals to number of turn from has table. In this
case estimation from hash table returns.

2. Number of turn n is less than number of turn from hash table nhash. For
minimal amount of turns criterion zero estimation returns. For average
game length ehash − |S|(nhash − n) returns.

3. Number of turn n is greater than number of turn from hash table nhash.
The worst estimation returns because we couldn’t guess all recent number
for certain amount of turns.

Estimation flag - ≥ β. It means that estimation of set S is ≥ β. It’s
possible three options.

1. Number of current turn equals to number of turn from has table and
β ≤ βhash. In this case β returns.

2. Number of turn n is less than number of turn from hash table nhash.
Only for average game length criterion if β ≤ ehash − |S|(nhash − n) then
β returns.

3. Number of turn n is greater than number of turn from hash table nhash
and estimation from hash table is greater than zero. The worst estimation
returns because we couldn’t guess all recent number for certain amount of
turns.

2.5.10 Response table.

We often need to count amount of bulls and cows between two numbers. To not
count response every time we allocate char array with size |Ω|2 and fill it with
responses before the search. The response table strongly accelerates the search.

2.6 Unused cutoffs.

2.6.1 Absent digits.

Let we do some sequence of turns (t1, r1) . . . (tn, rn). Denote S = (s1, s2 . . .)
set of numbers which satisfy all of the turns from sequence. Assume that all
numbers s1, s2 . . . do not contain some digits D = (d1, d2 . . .). Suppose that
absent digits are in ascending order d1 < d2 < . . . Consider some number p,
which has one or more absent digits. If number p, has only absent digits then
it can be pruned, because it does give nothing. If number p has from one to
three absent digits, then they should go in strict ascending order, otherwise this
number can be pruned. Consider the example. Let the sequence of turns for
bulls and cows game is (0123, 0.1)(1245, 0.0). All of the numbers from set S
don’t contain digits D = (1, 2, 4, 5). Consider the number 4058. It has two
absent digits 4 and 5. This number can be pruned because the number 1028 is
equivalent to the number 4058.

12

2.6.2 Uncalled digits.

Similarly reasoning can be used for uncalled digits. Let we have some sequence
of turns (t1, r1) . . . (tn, rn) and D = (d1, d2 . . .) is set of uncalled digits. Assume
that uncalled digits are in ascending order, d1 < d2 < . . . It’s possible to prune
numbers which have absent digits, which are not ordered in ascending order.
Consider the example. Let for bulls and cows game we made sequence of turns
(0123, 0.1)(1245, 0.2). Set of uncalled digits is D = (6, 7, 8, 9). Consider the
number 7601. It can be pruned, because of the equivalent number 6701.

Note. The only distinction from absent digits is that it’s not possible to
prune all of the numbers which have only uncalled digits. From all of the
numbers with uncalled digits in the example we should consider number 6789.

2.6.3 Same response for several turns.

Consider sequence of turns (t1, r1) · · · (tn, rn). Split all of the numbers t1 · · · tn
on groups with same response. Note Tb.c as set of numbers with same response
b.c, where b is amount of bulls and c is amount of cows.

Example. Consider sequence of turns (0123, 0.1)(1234, 0.1)(5678, 0.2),
then T0.1 = (0123, 1234), T0.2 = (5678). We can present the sequence using
alternative form (T0.1, 0.1)(T0.2, 0.2).

Lemma 9 Let we have the sequence of turns (t1, r1) · · · (tn, rn), which has al-
ternative form (Tb1.c1 , b1.c1) . . . (Tbl.cl , bl.cl), and two numbers p and q. Let it’s
exist transformation ψ such that all sets of numbers Tb.c with same responses,
transform to itself. ∀b,∀c ψ(Tb.c) = Tb.c and number p transforms to number q
ψ(p) = q. Then for each response r and each k

Φk[(t1, r1) · · · (tn, rn)(p, r)] = Φk[(t1, r1) · · · (tn, rn)(q, r)]

Proof. Using lemma 1 and that order of turns is not important we got

Φk[(t1, r1) · · · (tn, rn)(p, r)] = Φk[(Tb1.c1 , b1.c1) . . . (Tbl.cl , bl.cl)(p, r)] =

= Φk[(ψ(Tb1.c1), b1.c1) . . . (ψ(Tbl.cl), bl.cl)(ψ(p), r)] =

= Φk[(Tb1.c1 , b1.c1) . . . (Tbl.cl , bl.cl)(q, r)] = Φk[(t1, r1) · · · (tn, rn)(q, r)]

Assertion was proved.
Note. The same is true for Λ function.
Lemma 9 is extension of lemma 1, because numbers ti don’t have to move

to itself under transformation ψ. It’s sufficient only that all sets with same
response move to themselves. Using lemma 9, it’s possible to reduce cardinality
of sets of third turns when we got the same response on first two turns.

13

3 Algorithms.

3.1 The exact algorithm.

The exact algorithm always gives exact estimation. It has two arguments set
of numbers S, which satisfy all of the previous moves, and upper estimate β.
Algorithm looks over all possible numbers t ∈ Ω. After each of them set S will be
split on subsets with same responses S1(t) . . . Sk(t), now we need to find estimate
for all this subsets, recursively calling the same algorithm. The estimate of turn
t will be a sum of estimates of all subsets S1(t) . . . Sk(t). Minimal estimate for
all numbers will be the exact estimation of set S.

3.2 Heuristic algorithms.

Heuristic algorithms not always give exact estimation, but they are much faster
than the exact algorithm. We will successively narrow usage of them, gradually
moving to the exact algorithm. For searching of minimal amount of numbers
we’ll use crush algorithm. This algorithm was created by author of this pa-
per. For minimizing of average game length we’ll use Larmouth’s algorithm.
Description of algorithm could be found in the internet. Each of this heuris-
tic algorithms could be used for both optimization criteria but crush algorithm
gives better results for searching minimal amount of numbers, while Larmouth’s
algorithm is better for average game length.

Crush algorithm. Let we have some set of numbers S = (s1, s2 . . .), satis-
fying all of the previous moves. We iterate through all possible moves t. Each
of them split set S into subsets with the same responses S1(t) . . . Sk(t). Denote
ni(t) = |Si(t)|

∑
ni(t) = |S|. We suppose that all subsets Si(t) sorted by its

size in descending order, that is n1(t) ≥ n2(t) ≥ . . .
Suppose that for move t we got subsets with sizes n1(t), n2(t) . . . , and for the

move p we got subsets with sizes n1(p), n2(p) . . . Assume that move t is better,
than move p if n1(t) < n1(p) or n1(t) = n1(p) and n2(t) < n2(p) etc. For
example turn with subsets sizes 18, 18, 17 . . . is better than turn with subsets
sizes 18, 18, 18 . . . Crush algorithm selects move which splits set S on smaller
parts than all other moves.

Additionally we’ll use next rules.

• If found turn t, such that n1(t) = 1, then

1. if t ∈ S then it’s best turn.

2. if t /∈ S, then further search looks over of turns only from S.

• From two turns t ∈ S with subsets sizes n1(t) . . . nk(t) and p /∈ S with
subsets sizes n1(p) . . . nk(p) such that n1(t) = n1(p) . . . nk(t) = nk(p),
we’ll select turn t as the best. This means that from moves with same
subsets sizes we prefer turns from set S.

14

Larmouth’s algorithm. We iterate through all possible moves t. Each of
them split set S into subsets with the same responses S1(t) . . . Sk(t). Denote
ni(t) = |Si(t)|.

Denote belong function

IN(t, S) =

{
1 if t ∈ S
0 if t /∈ S

The best turn is turn which minimizes function

F (t) =
∑

ni(t)>1

ni(t) log(ni(t))− 2 log 2× IN(t, S)

3.3 Notation of algorithms.

Further we’ll use next names of algorithms.

Minimal amount of numbers.

bulls and cows

1. crush35 - crush algorithm is used for turns 3-5, for all others exact algo-
rithm is used.

2. crush45 - crush algorithm is used for turns 4, 5 only.

3. crush5 - crush algorithm is used for turn 5 only.

4. exact - only exact algorithm is used.

mastermind

1. crush3 - crush algorithm is used for turn 3 only.

2. exact - only exact algorithm is used.

Minimal average game length.

bulls and cows

1. avg35 - Larmouth algorithm is used for turns 3-5, for all others exact
algorithm is used.

2. avg45 - Larmouth algorithm is used for turns 4, 5 only.

3. avg5 - Larmouth algorithm is used for turn 5 only.

15

mastermind

1. crush3 - Larmouth algorithm is used for turn 3 only.

2. exact - only exact algorithm is used.

3.4 Extension for counting 6-movers, 5-movers etc.

Consider minimizing amount of numbers for bulls and cows game. Below we’ll
build trees for different algorithms. Quite often we can see that amount of 7-
movers equals to zero. In this case it’s possible to find turn which minimizes
amount of 6-movers. If we can find turn that minimizes amount of 6-movers to
zero, then we minimize amount of 5-movers etc. Search algorithm can minimize
not only 7-movers but 6-movers, 5-movers etc. It uses additional parameter
depthCount which means what do we need to count: 7-movers, 6-movers. . .

Note. If algorithm couldn’t solve all of the numbers for needed amount of
turns then it returns worst estimation.

Note. The same is done for mastermind game.

4 Projects description.

Project includes several applications. All of them is written under c++ except
one, which is written under javascript and uses for online game, building trees
and count statistics of them.

4.1 Windows application - bcw.

Helper routines.

• Running of crush35, crush45, avg35, avg45 algorithms for bulls and cows.

• Running all of algorithms for mastermind.

• Create sets of equivalence for turns 1-3 for bulls-cows and for turns 1-2
for mastermind.

• Building trees and storing them to text files.

• Loading tree from file, calculation of its statistics and creation tree string
for javascript.

4.2 Javascript application.

Online game using web application, building trees and count statistics.

• Building html file for tree browsing using jQuery.

• Loading tree and counting of its statistics.

• Game with man using storing tree.

16

4.3 The mechanism of the tasks [only bulls and cows].

For problems which take a lot of time special mechanism is created. At the
beginning we should create file jobs.txt. Each line of this file has one problem
with parameters. One can see example of the jobs.txt file below.

solve 0123(0,1)+0145(0,1) 7 4 8 #

solve 0123(0,1)+0134(0,1) 7 4 28 #

solve 0123(0,2)+1234(0,1)+4532(0,1) 7 5 3 #

At the beginning one can see keyword solve which means that this problem
still needs to be solved. Different processes take tasks from file and change
keyword solve to another keyword taken to show to other processes that this
problem is already taken. Next the sequence of turns with responses is written.
Finally one can see three parameters of algorithm.

• depthCount - shows what we need to count: 7 - 7-movers, 6 - 6-movers
etc.

Note. This parameter is not used for minimizing average game length.

• mde - defines from which turn program heuristic algorithm is used: 2
- from third, 3 - from fourth. . . For penultimate and last turn the exact
algorithm is always used.

• β - upper estimate beta.

The mechanism of the tasks allows simultaneously solve several problems
with many threads. It is created such that it’s automatically resume the solving
after computer restarts. Thus the problems can be solved several days. If it’s
necessary to solve several problems with independent results then it’s better to
place longer counting problems at the beginning of the list. It allows to make
maximum loading of computer because when all of the threads will finish except
one, then it’ll be better if last thread will finish as soon as possible. So it’s better
to sort problems by decreasing of time of calculation.

4.4 Problems executor [only bulls and cows].

The console application uses for jobs which placed in jobs.txt file.

4.5 Windows service [only bulls and cows].

The service runs several threads of executor. Calculations for crush5, avg5,
exact algorithms take very long time. So we need to use system service of
windows which automatically starts upon computer starts. Since the computer
for calculations has four cores the service runs four thread with low priority, to
not hinder other programs.

17

5 Results.

5.1 Minimal amount of numbers.

5.1.1 Bulls and cows.

Crush35 and crush45 algorithms. Since crush algorithm is much faster
then the exact one at first we run crush35 algorithm. Then we run crush45
algorithm only for cases where number of 7-movers is greater than zero with
upper estimates which we got from crush35 algorithm. Further we’ll do the
same for crush5 and exact algorithms. Amount of 7-movers is showed below.

numbers first turn crush35 crush45
1440 0123 0.1 76 53
1260 0123 0.2 22 10
720 0123 1.1 1 0
480 0123 1.0 0 -
360 0123 0.0 0 -
264 0123 0.3 0 -
216 0123 1.2 0 -
180 0123 2.0 0 -
72 0123 2.1 0 -
24 0123 3.0 0 -
9 0123 0.4 0 -
8 0123 1.3 0 -
6 0123 2.2 0 -
1 0123 4.0 0 -

total 5040 99 63

There is no response on very first turn 0123 for which crush35 algorithm re-
turns estimate equals 5040. It means that the algorithm solve all secret numbers
using up to seven turns.

Transition from one algorithm to another. Lets split of solving by crush5
and exact algorithms into two phases. At first using the results of algorithm
crush45 we got estimations for crush5 then using the results of crush5 we’ll
move to exact algorithm. Calculations for crush5 and the exact algorithm takes
a long time. So split solution in several steps. Lets call the algorithm for which
we already have estimates as prev, and one to which we go as next.
Steps 1-5. Estimation of best turns which we got from prev algorithm.

1. For prev algorithm find best turn t1 for very first turn (0123, 0.1).

2. Consider all of the responses r1 such that amount of 7-movers with prev
algorithm is greater than zero Φprev

7 [(0123, 0.1)(t1, r1)] > 0.

18

3. For such responses r1 count amount of 7-movers using next algorithm
e1(r1) = Φnext

7 [(0123, 0.1)(t1, r1)] and use as upper estimate β result of
prev algorithm β = Φprev

7 [(0123, 0.1)(t1, r1)].

4. Note E1 =
∑

r1
e1(r1)

5. Apply steps 1-4 for very first turn (0123, 0.2), we’ll got best turn t2 and
its estimation E2.

So, using steps 1-5, for the best turns of prev algorithm, we found estimates
with next algorithm for this turns.
Step 6. Building table for sequences (0123, 0.1)(t, 0.2).

6. Run next algorithm for all second turns t except (t1, t2, 0132, 0231, 1032,
1230), for sequences (0123, 0.1)(t, 0.2). For turns t1, t2 we already have
the estimations. As well we suppose that numbers 0132, 0231, 1032, 1230
are not the best. We run next algorithm for them at the end. For next
algorithm we use upper estimate β = min(E1,Φ

prev
7 [(0123, 0.1)(t, 0.2)]).

Note this estimate as e12(t) = Φnext
7 [(0123, 0.1)(t, 0.2)]. Sort moves by

ascending of e12(t) and write them into table. Add numbers t1 and t2
with its estimations to table.

Note. By sorting numbers in step 6 we in fact sort numbers or problems by
time of calculation in descending order. Thus we accelerate the calculations
(see 4.3).
Note. We can use table for turns (0123, 0.1)(t, 0.2) to find optimal turns and
estimates for the first turns (0123, 0.1) and (0123, 0.2) (see lemma 3).
Steps 7-8. Searching for amount of 7-movers for first turn (0123, 0.2).

7. Consider turn t with minimal estimation e12(t). For this turn consider all
different responses r, for which number of 7-movers using next algorithm
for sequence (0123, 0.2)(t, r) is greater than zero. To accelerate computing
we’ll use prev algorithm estimations. Denote E∗2 as sum of all such estima-
tions which is estimation of sequence (0123, 0.2)(t, ∗) by next algorithm.
If E∗2 < E2 then decrease the best estimation E2 = E∗2 .

8. For numbers t which have e12(t) < E2 do analogous routine and poten-
tially decrease E2. The result estimate E2 is the best estimation of next
algorithm for very first turn (0123, 0.2).

Step 9. Searching amount of 7-movers for the first turn (0123,0.1).

9. Now we should do the same for the first turn (0123,0.1).

Step 10. Check recent numbers.

10. Make sure than turns t = (0132, 0231, 1032, 1230) are not the best.
For them run next algorithm for sequences (0123, 0.1)(t, 0.1) and
(0123, 0.2)(t, 0.2) with upper estimates β = E1 and β = E2 respectively.

Now we make transition from crush45 algorithm to crush5.

19

Crush5 algorithm.

Estimations for the best turns (steps 1-5). Consider the best number
for first turn (0123, 0.1), which we got by crush45 algorithm. It’s number 1245.
We can get several responses after it, but only for three of them amount of
7-movers is greater than zero. For this cases run crush5 algorithm.

turn 1 turn 2 crush45 crush5
0123 0.1 1245 0.1 41 38
0123 0.1 1245 0.2 10 7
0123 0.1 1245 0.0 2 1

total 53 46

Analogously, if first turn is (0123, 0.2), then the best turn is 1435.

turn 1 turn 2 crush45 crush5
0123 0.2 1435 0.1 9 8
0123 0.2 1435 0.2 1 0

total 10 8

Now we got start estimations on maximum amount of 7-movers. After the
first turn (0123, 0.1) the estimate is E1 = 46. And after the first turn (0123, 0.2)
the estimate is E2 = 8.

Building of the table (step 6).

t (0123, 0.1)(t, 0.2)
1234 3
1034 4
1245 7
1204 7
1435 8
1045 9
1456 10
0234 10
0245 15
0214 17
0134 18
0456 30
0145 39
0124 41
4567 ≥ 46

20

The best turn after (0123, 0.2) (steps 7-8). Consider the second turn
1234. Only for responses 0.1 and 0.2 amount of 7-movers is greater than zero.

turn 1 turn 2 crush45 crush5
0123 0.2 1234 0.1 - 3
0123 0.2 1234 0.2 - 1
0123 0.2 1234 1.1 1 0

total 4

So if the second turn is 1234, then amount of 7-movers equals 4. From table
we can see that we don’t need to consider all recent numbers because amount
of 7-movers for them is always greater or equal then four. Thus the best second
turn for crush5 algorithm is 1234, and amount of 7-movers equals 4.

The best turn after (0123, 0.1) (step 9).

t (0123, 0.1)(t, 0.2) (0123, 0.1)(t, 0.1) E1 = 46
1234 3 ≥ 43 E1 ≥ 46
1034 4 ≥ 42 E1 ≥ 46
1245 7 38 E1 = 46
1204 7 ≥ 39 E1 ≥ 46
1435 8 ≥ 38 E1 ≥ 46
1045 9 ≥ 37 E1 ≥ 46
1456 10 ≥ 36 E1 ≥ 46
0234 10 ≥ 36 E1 ≥ 46
0245 15 ≥ 31 E1 ≥ 46
0214 17 ≥ 29 E1 ≥ 46
0134 18 ≥ 28 E1 ≥ 46
0456 30 ≥ 16 E1 ≥ 46
0145 39 ≥ 7 E1 ≥ 46
0124 41 ≥ 5 E1 ≥ 46
4567 ≥ 46 ×

Consider the second turn 1245 which we got as the best turn of crush45
algorithm. After it no one number gives the better result.

Checking numbers with digits 0-3 (step 10). At the end we should
make sure that numbers with digits from 0 to 3 only are not the best turns.

turns one and two crush5
(0123, 0.1)(0132, 0.1) ≥ 46
(0123, 0.1)(0231, 0.1) ≥ 46
(0123, 0.1)(1032, 0.1) ≥ 46
(0123, 0.1)(1230, 0.1) ≥ 46

turns one and two crush5
(0123, 0.2)(0132, 0.2) ≥ 4
(0123, 0.2)(0231, 0.2) ≥ 4
(0123, 0.2)(1032, 0.2) ≥ 4
(0123, 0.2)(1230, 0.2) ≥ 4

21

Crush5 algorithm results. After the first turn (0123, 0.1) the best sec-
ond turn is 1245 and amount of 7-movers is 46. After the first turn (0123, 0.2)
the best second turn is 1234 and amount of 7-movers is 4.

The exact algorithm.

Estimations for the best turns (steps 1-5). Consider the best number
for first turn (0123, 0.1), which we got by crush5 algorithm. It’s number 1245.
We can get several responses after it, but only for three of them amount of
7-movers is greater than zero. For this cases run exact algorithm.

turn 1 turn 2 crush5 exact
0123 0.1 1245 0.1 38 38
0123 0.1 1245 0.2 7 7
0123 0.1 1245 0.0 1 1

total 46 46

Analogously, if first turn is (0123, 0.2), then the best turn is 1234.

turn 1 turn 2 crush5 exact
0123 0.2 1234 0.1 3 3
0123 0.2 1234 0.2 1 1

total 4 4

Now we got start estimations on maximum amount of 7-movers. After the
first turn (0123, 0.1) the estimate is E1 = 46. And after the first turn (0123, 0.2)
the estimate is E2 = 4.

22

Steps 6-9. The difference between exact and crush5 algorithms one can
see in box frames.

t (0123, 0.1)(t, 0.2) (0123, 0.1)(t, 0.1) E1 = 46 (0123, 0.2)(t, 0.2)
1234 3 ≥ 43 E1 ≥ 46 1
1034 4 ≥ 42 E1 ≥ 46 ×
1204 7 ≥ 39 E1 ≥ 46 ×
1245 7 38 E1 = 46 ×
1435 7 ≥ 39 E1 ≥ 46 ×
1045 9 36 ? ×
0234 10 ≥ 36 E1 ≥ 46 ×
1456 10 ≥ 36 E1 ≥ 46 ×
0245 15 ≥ 31 E1 ≥ 46 ×
0214 16 ≥ 30 E1 ≥ 46 ×
0134 18 ≥ 28 E1 ≥ 46 ×
0456 30 ≥ 16 E1 ≥ 46 ×
0124 38 ≥ 8 E1 ≥ 46 ×
0145 38 ≥ 8 E1 ≥ 46 ×
4567 ≥ 46 × E1 ≥ 46 ×

We need to explore number 1045. Consider all of the answers r for which
estimation of sequence (0123, 0.1)(1045, r) by crush5 algorithm is greater than
zero. We got three answers, for two of them 0.1 and 0.2 we already have estima-
tions (see table below). Now count estimate of sequence (0123, 0.1)(1045, 0.0)
by the exact algorithm. We can see that number 1045 is also the best turn,
after first turn (0123, 0.1). So the exact algorithm gives the same estimate with
crush5.

turn 1 turn 2 crush5 exact
0123 0.1 1045 0.1 ≥ 37 36
0123 0.1 1045 0.2 9 9
0123 0.1 1045 0.0 1 1

total ≥ 47 46

Checking numbers with digits 0-3 (step 10). At the end we should
make sure that numbers with digits from 0 to 3 only are not the best turns.

turns one and two exact
(0123, 0.1)(0132, 0.1) ≥ 46
(0123, 0.1)(0231, 0.1) ≥ 46
(0123, 0.1)(1032, 0.1) ≥ 46
(0123, 0.1)(1230, 0.1) ≥ 46

turns one and two exact
(0123, 0.2)(0132, 0.2) ≥ 4
(0123, 0.2)(0231, 0.2) ≥ 4
(0123, 0.2)(1032, 0.2) ≥ 4
(0123, 0.2)(1230, 0.2) ≥ 4

23

Comparison table of different algorithms.

turn 1 crush35 crush45 crush5 exact
0123 0.1 76 53 46 46
0123 0.2 22 10 4 4
0123 1.1 1 0 0 0

total 99 63 50 50

Minimizing amount of 6-movers, 5-movers etc. We considered only re-
sponses on first turn 0123 which give amount of 7-movers greater than zero.
There are only two such responses 0.1 and 0.2. For all others we can mini-
mize amount of 6-movers. If minimal amount of 6-movers is zero then we can
minimize amount of 5-movers etc. Problem of minimizing 6-movers is much
more easier because we should do search with lower depth. Minimizing table is
showed below where first response 4.0 was omitted.

turn 1 7-movers 6-movers 5-movers 4-movers
0123 0.1 46
0123 0.2 4
0123 1.1 0 213
0123 1.0 0 88
0123 0.0 0 84
0123 0.3 0 20
0123 1.2 0 8
0123 2.0 0 4
0123 2.1 0 0 28
0123 3.0 0 0 2
0123 0.4 0 0 0 6
0123 1.3 0 0 1
0123 2.2 0 0 0 4

5.1.2 Mastermind.

Mastermind game is simpler than bulls and cows. So we can do search for crush3
and exact algorithms for all possible first turns. The result table with amount
of 5-movers is showed below. Dash symbol means that it’s not possible to solve
all secret numbers for up to five turns for this first turn.

turn 1 crush3 exact
0000 - -
0001 - 695
0011 651 608
0012 569 539
0123 - 583

24

So we can see that very first turn 0012 is best turn. Minimal amount of
5-movers equals to 539. The summary table for amount of 5-movers after first
turn for different responses is showed below.

turn 1 crush3 exact
0012 0.1 165 159
0012 1.1 128 121
0012 0.2 124 116
0012 1.0 88 80
0012 2.0 31 30
0012 1.2 19 19
0012 0.0 12 12
0012 0.3 1 1
0012 2.1 1 1
0012 0.4 0 -
0012 1.3 0 -
0012 2.2 0 -
0012 3.0 0 -
0012 4.0 0 -

total 569 539

5.2 Minimizing average game length.

5.2.1 Bulls and cows.

The problem of minimizing average game length is much harder than 7-movers
minimizing, but we know the exact estimation for it (see [1] and [2]). So it’s
sufficient to find algorithm with optimal estimation. At first run avg35 and
avg45 algorithms. After that run very fast algorithm which is not use heuristic
algorithms, but tries only recent numbers for turns 4-6 (fso column). Write the
exact algorithm results from [2] to the exact column of below table. Let’s com-
pare minimal estimation of avg45 and fso algorithms with the exact algorithm
results. We can see that optimal estimate is not achieved for answers 0.1, 0.2

25

and 1.1. So, we need to run avg5 algorithm only for that cases.

turn 1 avg35 avg45 fso min(avg45,fso) exact avg5
0123 0.0 1808 1807 1806 1806 1806 1806
0123 0.1 8009 7951 7942 7942 7935 7935
0123 0.2 6828 6817 6818 6817 6808 6808
0123 0.3 1284 1268 1269 1268 1268 1268
0123 0.4 32 32 32 32 32 32
0123 1.0 2400 2394 2393 2393 2393 2393
0123 1.1 3731 3717 3716 3716 3712 3712
0123 1.2 1031 1020 1020 1020 1020 1020
0123 1.3 30 30 30 30 30 30
0123 2.0 845 839 839 839 839 839
0123 2.1 314 312 312 312 312 312
0123 2.2 21 21 21 21 21 21
0123 3.0 97 97 97 97 97 97
0123 4.0 1 1 1 1 1 1

total turns 26 431 26 306 26 296 26 294 26 274 26 274

From the resulting table we can see that avg5 algorithm gives the exact
estimation. Thus, the minimum possible length of the game is reached and
avg5 algorithm gives the same estimation with the exact algorithm.

5.2.2 Mastermind.

Maximum five turns. Mastermind game is simpler than bulls and cows. So
we can do search for avg3 and exact algorithms for all possible first turns if we
can do maximum five turns. The result table is showed below. Dash symbol
means that it’s not possible to solve all secret numbers for up to five turns for
such first turn.

turn 1 avg3 exact
0000 - -
0001 - 5808
0011 5716 5702
0012 5638 5626
0123 - 5676

So we can see that very first turn 0012 is best turn. So we got first optimal
algorithm with minimal average game length if it’s possible to do only up to five
turns. The summary table for game length after first turn for different responses
is below.

26

turn 1 avg3 exact
0012 0.1 1253 1251
0012 1.1 1034 1029
0012 0.2 995 994
0012 1.0 804 800
0012 2.0 445 445
0012 1.2 347 347
0012 0.0 327 327
0012 0.3 171 171
0012 2.1 154 154
0012 3.0 76 76
0012 2.2 15 15
0012 1.3 11 11
0012 0.4 5 5
0012 4.0 1 1

total 5638 5626

Any number of turns. If we can do any number of turns then the best
average game length is 5625/1296=4.03 (see [3]). Now we have algorithm with
game length 5626/1296, the best turn is 0012. So we need to reduce estimate
by one. Suppose that the best turn for optimal algorithm is still the same.
We can expect that estimation could be reduced for the answers with longest
average game length. From upper table for avg3 and exact algorithms we can
see that such responses are 0.1, 1.1, 0.2 and 1.0. Run search for the first turns
(0012, 0.1), (0012, 1.1), (0012, 0.2), (0012, 1.0). For first turn (0012, 1.1) the
estimation became lower 1028/1296. So we have achieved minimal average game
length 5625/1296. It’s interesting that in this case for new and old algorithms
the first and the second turns are the same.

6 Tree building.

6.1 Tree building on c++.

To create program which can guess secret numbers and not use long calculations
we need to preliminary build tree and store it to file, then load this tree in
separate program and use it without any calculations.

6.1.1 Minimal amount of numbers.

Bulls and cows. During of tree building we’ll minimize not only 7-movers.
If amount of 7-movers for some node equals to zero we’ll minimize 6-movers. If
exists turn which has amount of 6-movers equals to zero, then we’ll minimize
5-movers etc. To minimize 6-movers, 5-movers the exact algorithm is always

27

used. To minimize 7-movers for first turns 0123 0.1 and 0123 0.2, we’ll use the
exact algorithm.

To accelerate tree construction we store first three turns. During of tree
building for every node we store additional parameter n, which means from
what we need start to count for its children. For example if n = 5 then all of
the children start to count amount of 5-movers. As well we store estimation e,
which helps for tree building. For example if n = 5 and e = 30, then sum of
5-movers for all children equals to 30.

Mastermind. Similar for mastermind game if number of 5-movers equals to
zero then we minimize amount of 4-movers etc. In contrast to bulls and cows
where we used first three turns here only first two is used.

6.1.2 Minimizing average game length.

During of tree building for every node we store estimate e, which helps for tree
building. For example if e = 30, then sum of estimations of all children equals
to 30. The same with minimal amount of numbers we use preliminary counted
first three turns for bulls-cows and first two turns for mastermind.

6.2 Tree building on javascript.

For online game, gathering statistics and build html trees we use program on
javascript. To set tree node we need its turn and children pointers for all possible
answers except answer 4.0. Javascript language has no pointers. For every
tree node we set identifier id. Instead of children pointers we use identifiers of
them. For every node we set recent numbers array. Tree building algorithm
automatically calculates children identifiers using recent numbers and turn of
node.

Consider nodes for which one of recent numbers splits recent numbers set by
subsets with maximum size 1. For this special nodes turn is not passed, because
it can be calculated. Nodes with one or two recent numbers automatically
satisfies this condition. Candidates to special nodes can be recent numbers sets
which have size ≤ 14 (14 - number of different answers). Below you can see the
table with special nodes for all optimal algorithms.

algorithm total nodes special nodes recent nodes %
crushBullsCows 5269 4859 410 8%

avgBullsCows 5117 4711 406 8%
crushMastermind 1349 1259 90 7%
avgMastermind5 1319 1235 84 6%
avgMastermind 1316 1234 82 6%

Additionally it’s possible to not pass turn for nodes which can be split on
subsets with size 1 not only by turns from recent numbers but any turn. There

28

are about 1-2% of such nodes. This idea is slowdown javascript tree building so
it’s not used.

The whole tree is given by one string, which is list of recent 13% node turns.
String consists of symbols with ASCII codes from 35 to 127, without symbol

”
\“, which has ASCII code 92, because it needs to use two symbols to pass it.

So we use 92-th system of numeration. The symbols which have ASCII codes
greater than 127 are not used because they are differently recognized by different
browsers. The turn is a number from 0 to 5039, which is lower than 92·92, so
to pass turn we need two symbols or two bytes.

Tree node processing. Algorithm is working such that recent numbers
array S is set by parent. So recent numbers is set before node processing. If S is
special one, then we calculate turn of node. Otherwise turn t is taken from tree
string. Split recent numbers set S on subsets with same answers Sb1c1 . . . Sbncn

for turn t (except answer 4.0). Set number 5b+ c for answer (b c) to order sets
Sbici . Now go over sets Sbici using order. We add new nodes to the end of
tree with recent numbers sets Sbici . New items are children of current node, for
answers (bi ci).

Tree building. At the beginning create tree with root node only. The turn
for this node is the first turn of tree string. Recent numbers set is all numbers
from Ω. After proceeding root node we get some new nodes which need to
process. The algorithm is working until some of the nodes is unprocessed. Let’s
take number of non special nodes for which we need pass best turn and count
string length for all algorithms. We can see that we need just (410 + 406 + 90 +
84 + 82)× 2 = 2144 bytes.

29

7 Edition history.

Edition 3.1 30 January 2017

• Changed tree building algorithm for javascript.

Edition 3.0 2 November 2014

• Bulls and cows game is solved for minimize amount of turns criterion.

• Solution of mastermind game for two optimization criteria is added.

• Tree building and tree statistics is added for mastermind game.

• Cutoffs of penultimate layer is added.

• Equivalent splits are added.

• Hashing is added.

• Html tree building and tree statistics moved to javascript.

Edition 2.1 5 November 2013 (small changes)

Edition 2.0 1 November 2011

• Article was strongly extended and supplemented.

• Article was translated from Russian to English.

• The site of project was created.

Edition 1.0 25 December 2008 (only in Russian)

References

[1] John Francis, Strategies for playing MOO, or Bulls and Cows.

http://slovesnov.users.sourceforge.net/bullscows/bulls_and_

cows.pdf

Original URL http://www.jfwaf.com/Bulls%20and%20Cows.pdf

[2] Tetsuro Tanaka, An Optimal MOO Strategy, Game Programming Work-
shop - Japan.

[3] Kenji Koyama, Tony W. Lai, An Optimal Mastermind Strategy. Journal of
Recreational Mathematics, 1993.

30

http://slovesnov.users.sourceforge.net/bullscows/bulls_and_cows.pdf
http://slovesnov.users.sourceforge.net/bullscows/bulls_and_cows.pdf
http://www.jfwaf.com/Bulls%20and%20Cows.pdf

	Introduction.
	Theory.
	Notation.
	Transformations.
	The equivalence classes.
	Sets of first-third moves.
	Algorithms accelerations.
	Unused cutoffs.

	Algorithms.
	The exact algorithm.
	Heuristic algorithms.
	Notation of algorithms.
	Extension for counting 6-movers, 5-movers etc.

	Projects description.
	Windows application - bcw.
	Javascript application.
	The mechanism of the tasks [only bulls and cows].
	Problems executor [only bulls and cows].
	Windows service [only bulls and cows].

	Results.
	Minimal amount of numbers.
	Minimizing average game length.

	Tree building.
	Tree building on c++.
	Tree building on javascript.

	Edition history.
	References.

