Aleksey Slovesnov

Solving cubic and fourth degree equations.

1 Solving a cubic equation.

1.1 From a general equation to a simplified one.

In general, the cubic equation is defined in the form.
azr® + br® + cx +d = 0, where a # 0 (1)

Let us assume that the numbers a, b, ¢, d are complex. By making
the substitution y = « + b/(3a) the equation (1) will be simplified
to the following form

v +py+q=0 (2)
where p = c¢/a — b*/(3a?) and q = 2b%/(3a)® — bc/(3a?) + d/a.

1.2 Solution of a simplified equation.

We will look for the solution of the equation (2) as a sum of two
components y = u + v, then 3> = u® + v3 + 3uv(u + v), hence
v’ +py+q=1u*+v>+ (Buv+p)(u+v)+q = 0. If both conditions
are satisfied

uw = —p/3

then y = u+ v will be the solution of the equation (2). Suppose that
one of the solutions u or v is 0. It follows from the second equation of
the system that this is possible only when p = 0, then the equation
(2) has the form 33 + ¢ = 0. Tts solutions will be y = /—¢. There
will be three distinct roots in the complex numbers if ¢ # 0 and
three congruent zero roots when g = 0.

Now consider the case when p # 0, in this case there are no
zero solutions of the system (3), so we can express v from the
second equation and substitute it into the first, we get the equation
u? — p3/(27u®) + ¢ = 0. Doing variable substitution ¢ = u® we get



the quadratic equation t? + gt — p3/27 = 0. Solving this quadratic
equation we obtain ¢t and find u = /.
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Since v = V/—q — u? we get
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If we take one of the values for the root of \/¢?/4 + p3/27 in
the formula for u, then for v it must be taken with a different sign

to satisfy the condition u3 + v® = —¢q. Changing the sign causes
permutation of components, so any value can be taken as the root

of \/q?/4 + p3/27 and the formula becomes as follows.
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Since uv = —p/3, the second summand v = —p/ (3u) is uniquely
defined.

1.3 The general algorithm.

We simplify the general equation az® + bx? + cx +d = 0 to the
reduced form y* + py + ¢ = 0 where p = c/a — b*/(3a*) and
q = 2b%/(3a)® — be/(3a®) + d/a.

If p = 0, then the solutions of the equation are y; = /—q.

If p # 0, then take any value of the complex root d = \/q¢%/4 + p3/27,

then calculate u; = ¢/—q/2 + d, since p # 0, there will always be
three complex roots. The roots will be y; = u; — p/(3u;).
From y; we find the roots of the original equation z; = y;—b/(3a).

1.4 Extras.

Let us study the function f(y) = 3® + py + ¢ where p and ¢ are
real numbers. To do this, we find its derivative f'(y) = 3y* + p.
If p = 0, there will be three coincident zero roots when ¢ = 0,



and if ¢ # 0, there will be one real root. If p > 0, then f'(y) > 0
and so there will be one real root. If p < 0, then there will be
two extremum points y; = ++1/—p/3. Let’s find the values at these

points f(yi) = yi(y7 +p)+q = £\/—p/3-2p/3+q = 2(£\/—p?/27+
q/2). Let’s find f(y1)f(y2) = 4(¢*/4+ p®/27) = 4D. On the interval

(—+v/—p/3,\/—p/3) the derivative is less than zero, the function f

is decreasing there, so if f(y;) and f(y2) have the same signs, i.e.
f(y1)f(y2) > 0, the equation will have only one real root. If f(y;)
and f(y2) have different signs, that is, f(y1)f(y2) < 0, then the
equation have three real roots. Let’s write out all cases in the table.

1. f(y1) = f(y2) = 0 three coincident real roots D = 0.

2. f(y1) =0, f(y2) #0or f(y1) # 0, f(y2) = 0 two coincident real
roots D = 0.

3. f(y1)f(y2) > 0 one real root D > 0.
4. f(y1)f(y2) < 0 three different real roots D < 0.

This table fits if p < 0. Above we have considered the case when
p > 0, the table also fits for it, so the table works Vp. Thus we get.

1. D =0,p = q =0 three coincident zero roots.
2. D =0,p+# 0 or q # 0 three real roots two of which coincide.
3. D > 0 one real and two complex roots.

4. D < 0 three different real roots.



1.5 Trigonometric solution.

1.5.1 Solution via sine.

Using the equality sin® a = 3sina/4 — sin(3a)/4, assume y = rsina
and substitute y into the equation y* + py + ¢ = 0, we get

3r¥sina  r?sin(3a)
4 4
grouping the summands we obtain
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r3sin®a + prsina + ¢ = +prsina+q=20

For the coefficient at sina to be zero, the condition must be
satisfied 3r> + 4p = 0. Hence we obtain that r = 2,/—p/3. Then

sin(3a) = 4q/r° = q/(2/—p*/27) = §,/25. The equation will have

three real roots if p < 0 and
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From here 3a = arcsin (% _2—;3> + 27k
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We obtain the solution of the equation

[— 1 [ 27 2rk
y=rsina = 2 ?psin(garcsin(g _—]ﬁ)jt%),k‘:(),lﬂ

1.5.2 Solution via cosine.

cos(3a) = 4cos®a — 3cosa. Hence cos®a = cos(3a)/4 + 3cosa/4,
assuming y = r cos a, substituting y into the equation y3+py-+q = 0,
we get

5 3 cos(3a) N 3r3cosa
4 4

r3cos®a + preosa+ q = +prcosa+q=0




Let’s make the coefficient in cos(a) equal to zero. 3r* +4p = 0. Find
the value of r = 21/—p/3. Then cos(3a) = —4q/r® = —2,/2%
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a = — | arccos 4 —7 + 27k |, where k =0,1,2
3 2\ —p?

We obtain the solution of the equation

[— 1 | 27 2k
y=rcosa =2 ?pcos(garccos(—g _—pg>+%),k:0,1,2

1.5.3 Example.

Hence we obtain 3a = arccos <—% 2—73> + 27k.

Consider the equation 2* — 7z — 6 = (z+ 1) (2 +2)(x — 3) = 0. Solve
it in trigonometric form p = -7, ¢ = —6.
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Yy = 2\/;sin <§ arcsin (—? ?) + —g > , where k =10,1,2
7 1 9 /3 27k

Yy = 2\/;COS (5 arccos (5 ?) + %) , where £k =0,1,2



2 Solving an equation of the fourth degree.
2.1 From general equation to simplified equation.
In general, a fourth degree equation is defined in the form.
az* 4+ bz® + cx® + dv + e = 0, where a # 0 (4)

Substituting y = x — b/(4a) we obtain the reduced equation

Yy oy tay+r=0 (5)
with coefficients,
_ 8ac — 3b* _ 8a’d — 4abc 4+ b’
P="gp + 17 8a3

B 256a%e — 64abd + 16ab*c — 3b*
"= 256a°

2.2 Solving a simplified equation.

We add and subtract the summand 2sy? + s?, where s is some
unknown variable.

(Y +2sy*+5")+py° —(259°+5° ) Fqy+r = (y*+5)*+(p—25)y* +qy+r—s>

For now we assume that s # p/2, then

(v +8)>+(p—28)y* +qy+r—s® = (y*+s)°+(p—2s) <y2 5 zy%) +r—s?

To make the expression in brackets a complete square, we need
to add and subtract ¢?/(4(p — 2s)?).

qy ¢ ¢
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Now we want to find s such that the free term is equal to zero
r—s*—q*/(4(p—2s)) =0 or (r — s*)(p — 2s) — ¢*/4 = 0. Thus we
obtain a cubic equation for s.

=0

25° —ps* —2rs +rp—q¢*/4 =0 (6)



In this case, the simplified equation (5) reduces to the form

(y2+3)2+(p_23) (y+ﬁ) =0

hence we obtain two quadratic equations

2hs+4p—2 7 \_y
y +s p—2s y+2<p_28>

Since we consider that s # p/2, the root of /p —2s has two
values, that is, we get four solutions of two quadratic equations.
Let’s go back to the cubic equation 2s® — ps? — 2rs+1rp — ¢*/4 =0
(6). If it has at least one root s not equal to p/2, we can use it.

Now consider the case when all roots of the equation (6) are equal
to p/2, that is, it has the form 2(s—p/2)% = 253 —3ps*+... = 0, then
all coefficients of this polynomial must be equal to the coefficients
of the polynomial (6). In particular, the coefficient at s* must be
the same. In one polynomial it is equal to —p in the other —3p, that
is, p = 0. Therefore, the polynomial has the form 2(s — p/2)? = 2s*
and to match the coefficients at all powers of s the values of ¢ and r
must be equal to zero. That is, in this case the above equation has
the form y* = 0 and has four coincident zero roots.

2.3 The general algorithm.

We reduce the general equation az* + bz® + cz? +dx +e = 0 to the
simplified equation y*+py*+qy+r = 0, where p = (Sac—3b?)/(8a?),
q = (8a*d — 4abc + V*)/(8a%), r = (256a%ec — 64a’bd + 16ab*c —
3v1)/(256a%).

If p=gq=r =0, there will be four coinciding zero roots y; = 0.

If at least one of the values of p, ¢, r is not equal to 0, then solve
the cubic equation 2s® —ps? — 2rs+rp—q?/4 = 0. We choose a root
s not equal to p/2, such a root is always present. Substitute s into
the quadratic equations and find the four roots v;.
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2(p — 2s)
From y; we find the roots of the original equation z; = y;—b/(4a).



