Solving cubic and fourth degree equations.

1 Solving a cubic equation.

1.1 From a general equation to a simplified one.

In general, the cubic equation is defined in the form.

$$
\begin{equation*}
a x^{3}+b x^{2}+c x+d=0, \text { where } a \neq 0 \tag{1}
\end{equation*}
$$

Let us assume that the numbers a, b, c, d are complex. By making the substitution $y=x+b /(3 a)$ the equation (1) will be simplified to the following form

$$
\begin{equation*}
y^{3}+p y+q=0 \tag{2}
\end{equation*}
$$

where $p=c / a-b^{2} /\left(3 a^{2}\right)$ and $q=2 b^{3} /(3 a)^{3}-b c /\left(3 a^{2}\right)+d / a$.

1.2 Solution of a simplified equation.

We will look for the solution of the equation (2) as a sum of two components $y=u+v$, then $y^{3}=u^{3}+v^{3}+3 u v(u+v)$, hence $y^{3}+p y+q=u^{3}+v^{3}+(3 u v+p)(u+v)+q=0$. If both conditions are satisfied

$$
\left\{\begin{array}{l}
u^{3}+v^{3}=-q \tag{3}\\
u v=-p / 3
\end{array}\right.
$$

then $y=u+v$ will be the solution of the equation (2). Suppose that one of the solutions u or v is 0 . It follows from the second equation of the system that this is possible only when $p=0$, then the equation (2) has the form $y^{3}+q=0$. Its solutions will be $y=\sqrt[3]{-q}$. There will be three distinct roots in the complex numbers if $q \neq 0$ and three congruent zero roots when $q=0$.

Now consider the case when $p \neq 0$, in this case there are no zero solutions of the system (3), so we can express v from the second equation and substitute it into the first, we get the equation $u^{3}-p^{3} /\left(27 u^{3}\right)+q=0$. Doing variable substitution $t=u^{3}$ we get
the quadratic equation $t^{2}+q t-p^{3} / 27=0$. Solving this quadratic equation we obtain t and find $u=\sqrt[3]{t}$.

$$
u=\sqrt[3]{t}=\sqrt[3]{\frac{-q \pm \sqrt{q^{2}+4 p^{3} / 27}}{2}}=\sqrt[3]{-\frac{q}{2} \pm \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

Since $v=\sqrt[3]{-q-u^{3}}$ we get

$$
y=u+v=\sqrt[3]{-\frac{q}{2} \pm \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2} \mp \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

If we take one of the values for the root of $\sqrt{q^{2} / 4+p^{3} / 27}$ in the formula for u, then for v it must be taken with a different sign to satisfy the condition $u^{3}+v^{3}=-q$. Changing the sign causes permutation of components, so any value can be taken as the root of $\sqrt{q^{2} / 4+p^{3} / 27}$ and the formula becomes as follows.

$$
y=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

Since $u v=-p / 3$, the second summand $v=-p /(3 u)$ is uniquely defined.

1.3 The general algorithm.

We simplify the general equation $a x^{3}+b x^{2}+c x+d=0$ to the reduced form $y^{3}+p y+q=0$ where $p=c / a-b^{2} /\left(3 a^{2}\right)$ and $q=2 b^{3} /(3 a)^{3}-b c /\left(3 a^{2}\right)+d / a$.

If $p=0$, then the solutions of the equation are $y_{i}=\sqrt[3]{-q}$.
If $p \neq 0$, then take any value of the complex root $d=\sqrt{q^{2} / 4+p^{3} / 27}$, then calculate $u_{i}=\sqrt[3]{-q / 2+d}$, since $p \neq 0$, there will always be three complex roots. The roots will be $y_{i}=u_{i}-p /\left(3 u_{i}\right)$.

From y_{i} we find the roots of the original equation $x_{i}=y_{i}-b /(3 a)$.

1.4 Extras.

Let us study the function $f(y)=y^{3}+p y+q$ where p and q are real numbers. To do this, we find its derivative $f^{\prime}(y)=3 y^{2}+p$. If $p=0$, there will be three coincident zero roots when $q=0$,
and if $q \neq 0$, there will be one real root. If $p>0$, then $f^{\prime}(y)>0$ and so there will be one real root. If $p<0$, then there will be two extremum points $y_{i}= \pm \sqrt{-p / 3}$. Let's find the values at these points $f\left(y_{i}\right)=y_{i}\left(y_{i}^{2}+p\right)+q= \pm \sqrt{-p / 3} \cdot 2 p / 3+q=2\left(\pm \sqrt{-p^{3} / 27}+\right.$ $q / 2)$. Let's find $f\left(y_{1}\right) f\left(y_{2}\right)=4\left(q^{2} / 4+p^{3} / 27\right)=4 D$. On the interval $(-\sqrt{-p / 3}, \sqrt{-p / 3})$ the derivative is less than zero, the function f is decreasing there, so if $f\left(y_{1}\right)$ and $f\left(y_{2}\right)$ have the same signs, i.e. $f\left(y_{1}\right) f\left(y_{2}\right)>0$, the equation will have only one real root. If $f\left(y_{1}\right)$ and $f\left(y_{2}\right)$ have different signs, that is, $f\left(y_{1}\right) f\left(y_{2}\right)<0$, then the equation have three real roots. Let's write out all cases in the table.

1. $f\left(y_{1}\right)=f\left(y_{2}\right)=0$ three coincident real roots $D=0$.
2. $f\left(y_{1}\right)=0, f\left(y_{2}\right) \neq 0$ or $f\left(y_{1}\right) \neq 0, f\left(y_{2}\right)=0$ two coincident real roots $D=0$.
3. $f\left(y_{1}\right) f\left(y_{2}\right)>0$ one real root $D>0$.
4. $f\left(y_{1}\right) f\left(y_{2}\right)<0$ three different real roots $D<0$.

This table fits if $p \leq 0$. Above we have considered the case when $p>0$, the table also fits for it, so the table works $\forall p$. Thus we get.

1. $D=0, p=q=0$ three coincident zero roots.
2. $D=0, p \neq 0$ or $q \neq 0$ three real roots two of which coincide.
3. $D>0$ one real and two complex roots.
4. $D<0$ three different real roots.

1.5 Trigonometric solution.

1.5.1 Solution via sine.

Using the equality $\sin ^{3} a=3 \sin a / 4-\sin (3 a) / 4$, assume $y=r \sin a$ and substitute y into the equation $y^{3}+p y+q=0$, we get

$$
r^{3} \sin ^{3} a+p r \sin a+q=\frac{3 r^{3} \sin a}{4}-\frac{r^{3} \sin (3 a)}{4}+p r \sin a+q=0
$$

grouping the summands we obtain

$$
-\frac{r^{3} \sin (3 a)}{4}+\left(\frac{3 r^{3}}{4}+p r\right) \sin a+q=0
$$

For the coefficient at $\sin a$ to be zero, the condition must be satisfied $3 r^{2}+4 p=0$. Hence we obtain that $r=2 \sqrt{-p / 3}$. Then $\sin (3 a)=4 q / r^{3}=q /\left(2 \sqrt{-p^{3} / 27}\right)=\frac{q}{2} \sqrt{\frac{27}{-p^{3}}}$. The equation will have three real roots if $p<0$ and

$$
\left|\frac{q}{2} \sqrt{\frac{27}{-p^{3}}}\right| \leq 1 \quad \Leftrightarrow \quad \frac{q^{2}}{4} \leq \frac{-p^{3}}{27} \quad \Leftrightarrow \quad \frac{q^{2}}{4}+\frac{p^{3}}{27} \leq 0
$$

From here $3 a=\arcsin \left(\frac{q}{2} \sqrt{\frac{27}{-p^{3}}}\right)+2 \pi k$

$$
a=\frac{1}{3}\left(\arcsin \left(\frac{q}{2} \sqrt{\frac{27}{-p^{3}}}\right)+2 \pi k\right), \text { where } k=0,1,2
$$

We obtain the solution of the equation

$$
y=r \sin a=2 \sqrt{\frac{-p}{3}} \sin \left(\frac{1}{3} \arcsin \left(\frac{q}{2} \sqrt{\frac{27}{-p^{3}}}\right)+\frac{2 \pi k}{3}\right), k=0,1,2
$$

1.5.2 Solution via cosine.

$\cos (3 a)=4 \cos ^{3} a-3 \cos a$. Hence $\cos ^{3} a=\cos (3 a) / 4+3 \cos a / 4$, assuming $y=r \cos a$, substituting y into the equation $y^{3}+p y+q=0$, we get

$$
r^{3} \cos ^{3} a+p r \cos a+q=\frac{r^{3} \cos (3 a)}{4}+\frac{3 r^{3} \cos a}{4}+p r \cos a+q=0
$$

Let's make the coefficient in $\cos (a)$ equal to zero. $3 r^{2}+4 p=0$. Find the value of $r=2 \sqrt{-p / 3}$. Then $\cos (3 a)=-4 q / r^{3}=-\frac{q}{2} \sqrt{\frac{27}{-p^{3}}}$. Hence we obtain $3 a=\arccos \left(-\frac{q}{2} \sqrt{\frac{27}{-p^{3}}}\right)+2 \pi k$.

$$
a=\frac{1}{3}\left(\arccos \left(-\frac{q}{2} \sqrt{\frac{27}{-p^{3}}}\right)+2 \pi k\right), \text { where } k=0,1,2
$$

We obtain the solution of the equation

$$
y=r \cos a=2 \sqrt{\frac{-p}{3}} \cos \left(\frac{1}{3} \arccos \left(-\frac{q}{2} \sqrt{\frac{27}{-p^{3}}}\right)+\frac{2 \pi k}{3}\right), k=0,1,2
$$

1.5.3 Example.

Consider the equation $x^{3}-7 x-6=(x+1)(x+2)(x-3)=0$. Solve it in trigonometric form $p=-7, q=-6$.

$$
\begin{aligned}
y & =2 \sqrt{\frac{7}{3}} \sin \left(\frac{1}{3} \arcsin \left(-\frac{9}{7} \sqrt{\frac{3}{7}}\right)+\frac{2 \pi k}{3}\right), \text { where } k=0,1,2 \\
y & =2 \sqrt{\frac{7}{3}} \cos \left(\frac{1}{3} \arccos \left(\frac{9}{7} \sqrt{\frac{3}{7}}\right)+\frac{2 \pi k}{3}\right), \text { where } k=0,1,2
\end{aligned}
$$

2 Solving an equation of the fourth degree.

2.1 From general equation to simplified equation.

In general, a fourth degree equation is defined in the form.

$$
\begin{equation*}
a x^{4}+b x^{3}+c x^{2}+d x+e=0, \text { where } a \neq 0 \tag{4}
\end{equation*}
$$

Substituting $y=x-b /(4 a)$ we obtain the reduced equation

$$
\begin{equation*}
y^{4}+p y^{2}+q y+r=0 \tag{5}
\end{equation*}
$$

with coefficients,

$$
\begin{aligned}
p & =\frac{8 a c-3 b^{2}}{8 a^{2}}, \quad q=\frac{8 a^{2} d-4 a b c+b^{3}}{8 a^{3}} \\
r & =\frac{256 a^{3} e-64 a^{2} b d+16 a b^{2} c-3 b^{4}}{256 a^{4}}
\end{aligned}
$$

2.2 Solving a simplified equation.

We add and subtract the summand $2 s y^{2}+s^{2}$, where s is some unknown variable.
$\left(y^{4}+2 s y^{2}+s^{2}\right)+p y^{2}-\left(2 s y^{2}+s^{2}\right)+q y+r=\left(y^{2}+s\right)^{2}+(p-2 s) y^{2}+q y+r-s^{2}$
For now we assume that $s \neq p / 2$, then
$\left(y^{2}+s\right)^{2}+(p-2 s) y^{2}+q y+r-s^{2}=\left(y^{2}+s\right)^{2}+(p-2 s)\left(y^{2}+\frac{q y}{p-2 s}\right)+r-s^{2}$
To make the expression in brackets a complete square, we need to add and subtract $q^{2} /\left(4(p-2 s)^{2}\right)$.
$\left(y^{2}+s\right)^{2}+(p-2 s)\left(y^{2}+\frac{q y}{p-2 s}+\frac{q^{2}}{4(p-2 s)^{2}}\right)+r-s^{2}-\frac{q^{2}}{4(p-2 s)}=0$
Now we want to find s such that the free term is equal to zero $r-s^{2}-q^{2} /(4(p-2 s))=0$ or $\left(r-s^{2}\right)(p-2 s)-q^{2} / 4=0$. Thus we obtain a cubic equation for s.

$$
\begin{equation*}
2 s^{3}-p s^{2}-2 r s+r p-q^{2} / 4=0 \tag{6}
\end{equation*}
$$

In this case, the simplified equation (5) reduces to the form

$$
\left(y^{2}+s\right)^{2}+(p-2 s)\left(y+\frac{q}{2(p-2 s)}\right)^{2}=0
$$

hence we obtain two quadratic equations

$$
y^{2}+s \pm \sqrt{p-2 s}\left(y+\frac{q}{2(p-2 s)}\right)=0
$$

Since we consider that $s \neq p / 2$, the root of $\sqrt{p-2 s}$ has two values, that is, we get four solutions of two quadratic equations. Let's go back to the cubic equation $2 s^{3}-p s^{2}-2 r s+r p-q^{2} / 4=0$ (6). If it has at least one root s not equal to $p / 2$, we can use it.

Now consider the case when all roots of the equation (6) are equal to $p / 2$, that is, it has the form $2(s-p / 2)^{3}=2 s^{3}-3 p s^{2}+\ldots=0$, then all coefficients of this polynomial must be equal to the coefficients of the polynomial (6). In particular, the coefficient at s^{2} must be the same. In one polynomial it is equal to $-p$ in the other $-3 p$, that is, $p=0$. Therefore, the polynomial has the form $2(s-p / 2)^{3}=2 s^{3}$ and to match the coefficients at all powers of s the values of q and r must be equal to zero. That is, in this case the above equation has the form $y^{4}=0$ and has four coincident zero roots.

2.3 The general algorithm.

We reduce the general equation $a x^{4}+b x^{3}+c x^{2}+d x+e=0$ to the simplified equation $y^{4}+p y^{2}+q y+r=0$, where $p=\left(8 a c-3 b^{2}\right) /\left(8 a^{2}\right)$, $q=\left(8 a^{2} d-4 a b c+b^{3}\right) /\left(8 a^{3}\right), r=\left(256 a^{3} e-64 a^{2} b d+16 a b^{2} c-\right.$ $\left.3 b^{4}\right) /\left(256 a^{4}\right)$.

If $p=q=r=0$, there will be four coinciding zero roots $y_{i}=0$.
If at least one of the values of p, q, r is not equal to 0 , then solve the cubic equation $2 s^{3}-p s^{2}-2 r s+r p-q^{2} / 4=0$. We choose a root s not equal to $p / 2$, such a root is always present. Substitute s into the quadratic equations and find the four roots y_{i}.

$$
y^{2}+s \pm \sqrt{p-2 s}\left(y+\frac{q}{2(p-2 s)}\right)=0
$$

From y_{i} we find the roots of the original equation $x_{i}=y_{i}-b /(4 a)$.

